Advertisements
Advertisements
प्रश्न
If x2 + y2 = 29 and xy = 2, find the value of x4 + y4 .
उत्तर
We have:
\[\left( x^2 + y^2 \right)^2 = x^4 + 2 x^2 y^2 + y^4 \]
\[ \Rightarrow x^4 + y^4 = \left( x^2 + y^2 \right)^2 - 2 x^2 y^2 \]
\[ \Rightarrow x^4 + y^4 = \left( x^2 + y^2 \right)^2 - 2 \left( xy \right)^2 \]
\[ \Rightarrow x^4 + y^4 = {29}^2 - 2 \left( 2 \right)^2 (\because x^2 + y^2 = 29 \text { and } xy = 2)\]
\[ \Rightarrow x^4 + y^4 = 841 - 8\]
\[ \Rightarrow x^4 + y^4 = 833\]
APPEARS IN
संबंधित प्रश्न
Factorize xy9 - yx9
Factorize the following expressions:
32a3 + 108b3
Factorize the following expressions:
a3 + 3a2b + 3ab2 + b3 - 8
Factorize 125x3 - 27 y3 - 225x2 y +135xy2
Multiply: x2 + 4y2 + z3 + 2xy + xz − 2yz by x − 2y − z
The expression x4 + 4 can be factorized as
Evaluate: (4m - 2)(m2 + 5m - 6)
Divide: 35a3 + 3a2b - 2ab2 by 5a - b
Write the variables, constant and terms of the following expression
7p – 4q + 5
Give an algebraic equation for the following statement:
“The difference between the area and perimeter of a rectangle is 20”.