Advertisements
Advertisements
प्रश्न
If x2 + y2 = 29 and xy = 2, find the value of x - y.
उत्तर
We have:
\[\left( x - y \right)^2 = x^2 - 2xy + y^2 \]
\[ \Rightarrow \left( x - y \right) = \pm \sqrt{x^2 - 2xy + y^2}\]
\[ \Rightarrow \left( x + y \right) = \pm \sqrt{29 - 2 \times 2} (\because x^2 + y^2 = 29 \text { and } xy = 2)\]
\[ \Rightarrow \left( x + y \right) = \pm \sqrt{29 - 4}\]
\[ \Rightarrow \left( x + y \right) = \pm \sqrt{25}\]
\[ \Rightarrow \left( x + y \right) = \pm 5\]
APPEARS IN
संबंधित प्रश्न
Factorize the following expressions:
`a^3 - 1/a^3 - 2a + 2/a`
`2sqrt2a^3 + 3sqrt3b^3 + c^3 - 3 sqrt6abc`
Multiply: x2 + 4y2 + 2xy − 3x + 6y + 9 by x − 2y + 3
Write the value of 253 − 753 + 503.
(x + y)3 − (x − y)3 can be factorized as
Write the number of the term of the following polynomial.
ax – by + y x z
Multiply: (2x - 3y)(2x + 3y)
Divide: 15x2 + 31xy + 14y2 by 5x + 7y
Express the following as an algebraic expression:
The product of x and y divided by m.
If Rohit has 5xy toffees and Shantanu has 20yx toffees, then Shantanu has ______ more toffees.