Advertisements
Advertisements
प्रश्न
`2sqrt2a^3 + 3sqrt3b^3 + c^3 - 3 sqrt6abc`
उत्तर
`= (sqrt2a)^3+ (sqrt3b)^3 + c^3 - 3 xx sqrt2a xx sqrt3b xx c`
`=(sqrt2a + sqrt3b + c)((sqrt2a)^2 + (sqrt3b)^2 + c^2 - (sqrt2a)(sqrt3) - (sqrt3b)c - (sqrt2a)c)`
`= (sqrt2 + sqrt3b + c)(2a^2 + 3b^2 + c^2 - sqrt6ab - sqrt3bc - sqrt2ac)`
`∴ 2sqrt2a^3 + 3sqrt3b^3 + c^3 - 3sqrt6abc = (sqrt2a + sqrt3b + c)(2a^2 + 3b^2 + c^2 - sqrt6ab - sqrt3bc - sqrt2ac)`
APPEARS IN
संबंधित प्रश्न
Factorize x( x - 2)( x - 4) + 4x - 8
Factorize the following expressions:
`x^3/216 - 8y^3`
Factorize the following expressions:
x3 + 6x2 +12x +16
Mark the correct alternative in each of the following: The factors of a2 − 1 − 2x − x2 are
Evaluate: (6p2 - 8pq + 2q2) (- 5p)
Divide: 4x3 - 2x2 by - x
Divide: 2a2 - 11a + 12 by a - 4
Divide: 35a3 + 3a2b - 2ab2 by 5a - b
Write in the form of an algebraic expression:
Perimeter (P) of a rectangle is two times the sum of its length (l) and its breadth (b).
An equation is true for all values of its variables.