Advertisements
Advertisements
प्रश्न
`2sqrt2a^3 + 3sqrt3b^3 + c^3 - 3 sqrt6abc`
उत्तर
`= (sqrt2a)^3+ (sqrt3b)^3 + c^3 - 3 xx sqrt2a xx sqrt3b xx c`
`=(sqrt2a + sqrt3b + c)((sqrt2a)^2 + (sqrt3b)^2 + c^2 - (sqrt2a)(sqrt3) - (sqrt3b)c - (sqrt2a)c)`
`= (sqrt2 + sqrt3b + c)(2a^2 + 3b^2 + c^2 - sqrt6ab - sqrt3bc - sqrt2ac)`
`∴ 2sqrt2a^3 + 3sqrt3b^3 + c^3 - 3sqrt6abc = (sqrt2a + sqrt3b + c)(2a^2 + 3b^2 + c^2 - sqrt6ab - sqrt3bc - sqrt2ac)`
APPEARS IN
संबंधित प्रश्न
Factorize: a (a + b)3 - 3a2b (a + b)
Factorize 8x2 + y3 +12x2 y + 6xy2
Factorize : x2 − 1 − 2a − a2
Mark the correct alternative in each of the following: The factors of a2 − 1 − 2x − x2 are
Multiply: (2x + 3y)(2x + 3y)
Divide: 9a4b - 15a3b2 + 12a2b3 by - 3a2b
Divide: 9x2 - 24xy + 16y2 by 3x- 4y
The area of a rectangle is 6x2 – 4xy – 10y2 square unit and its length is 2x + 2y unit. Find its breadth.
Write in the form of an algebraic expression:
Surface area of a cube is six times the square of its edge.
If x = 2 and y = 3, then find the value of the following expressions
x + y