Advertisements
Advertisements
प्रश्न
The area of a rectangle is 6x2 – 4xy – 10y2 square unit and its length is 2x + 2y unit. Find its breadth.
उत्तर
Area of a rectangle
= 6x2 - 4xy - 10y2 sq.units
Length = 2x + 2y units
∴ Breadth = `"Area"/"Length"`
`= ("6x"^2 - 4"xy" - 10"y"^2)/"2x + 2y"`
3x - 5y
`"2x" + "2y")overline(6"x"^2 - 4"xy" - 10"y"^2)(`
6x2 + 6xy
- -
- 10xy - 10y2
- 10xy - 10y2
+ +
xxxx
= 3x - 5y units
Hence breadthy = 3x - 5y units
APPEARS IN
संबंधित प्रश्न
Factorize `2a^2 + 2 sqrt6ab + 3b^2`
Simplify `(173 xx 173 xx 173 xx 127 xx 127 xx 127)/(173 xx 173 xx 173 xx 127 xx 127 xx 127)`
a3 + 8b3 + 64c3 - 24abc
8x3 -125y3 +180xy + 216
Multiply: x2 + y2 + z2 − xy + xz + yz by x + y − z
The expression x4 + 4 can be factorized as
Evaluate: (c + 5)(c - 3)
Evaluate: (3c - 5d)(4c - 6d)
Express the following as an algebraic expression:
The sum of x and y minus m.
If x = 2 and y = 3, then find the value of the following expressions
x + y