Advertisements
Advertisements
प्रश्न
If x3 − 3x2 + 3x − 7 = (x + 1) (ax2 + bx + c), then a + b + c =
पर्याय
4
12
-10
3
उत्तर
The given equation is
x3 − 3x2 + 3x − 7 = (x + 1) (ax2 + bx + c)
This can be written as
\[x^3 - 3 x^2 + 3x - 7 = \left( x + 1 \right)\left( a x^2 + bx + c \right)\]
\[ \Rightarrow x^3 - 3 x^2 + 3x - 7 = a x^3 + b x^2 + cx + a x^2 + bx + c\]
\[ \Rightarrow x^3 - 3 x^2 + 3x - 7 = a x^3 + \left( a + b \right) x^2 + \left( b + c \right)x + c\]
Comparing the coefficients on both sides of the equation.
We get,
a=1 ....... (1)
a+b = -3 ......... (2)
b+c =3 ......... (3)
c = -7 .......(4)
Putting the value of a from (1) in (2)
We get,
1+b =-3
b=-3 -1
b=-4
So the value of a, b and c is 1, – 4 and -7 respectively.
Therefore,
a + b + c =1 - 4 - 7 = -10
APPEARS IN
संबंधित प्रश्न
Factorize `6ab - b^2 + 12ac - 2bc`
Factorize the following expressions:
x3y3 + 1
Find the value of the following expression: 16x2 + 24x + 9, when \[x = \frac{7}{4}\]
Find the value of x3 + y3 − 12xy + 64, when x + y =−4
Evaluate: (3x - 1)(4x3 - 2x2 + 6x - 3)
Evaluate: (6p2 - 8pq + 2q2) (- 5p)
Divide: 9a4b - 15a3b2 + 12a2b3 by - 3a2b
Divide: 2m3n5 by - mn
The simplest form of 5 ÷ `(3/2) - 1/3` is ______.
Write the variables, constant and terms of the following expression
29x + 13y