हिंदी

RD Sharma solutions for Mathematics [English] Class 8 chapter 6 - Algebraic Expressions and Identities [Latest edition]

Advertisements

Chapters

RD Sharma solutions for Mathematics [English] Class 8 chapter 6 - Algebraic Expressions and Identities - Shaalaa.com
Advertisements

Solutions for Chapter 6: Algebraic Expressions and Identities

Below listed, you can find solutions for Chapter 6 of CBSE RD Sharma for Mathematics [English] Class 8.


Exercise 6.1Exercise 6.2Exercise 6.3Exercise 6.4Exercise 6.5Exercise 6.6Exercise 6.7
Exercise 6.1 [Page 2]

RD Sharma solutions for Mathematics [English] Class 8 6 Algebraic Expressions and Identities Exercise 6.1 [Page 2]

Exercise 6.1 | Q 1.1 | Page 2

Identify the term, their coefficients for the following expression:

 7x2yz − 5xy

Exercise 6.1 | Q 1.2 | Page 2

Identify the term, their coefficients for the following expression:

 x2 + x + 1

Exercise 6.1 | Q 1.3 | Page 2

Identify the term, their coefficients for the following expression:

 3x2y2 − 5x2y2z2 + z2

Exercise 6.1 | Q 1.4 | Page 2

Identify the term, their coefficients for the following expression:

9 − ab + bc − ca

Exercise 6.1 | Q 1.5 | Page 2

Identify the term, their coefficients for the following expression:

\[\frac{a}{2} + \frac{b}{2} - ab\]

Exercise 6.1 | Q 1.6 | Page 2

Identify the term, their coefficients for the following expression:

0.2x − 0.3xy + 0.5y

Exercise 6.1 | Q 2.01 | Page 2

Classify the following polynomial as monomial, binomial, trinomial. Which polynomial do not fit in any category?

x + y

Exercise 6.1 | Q 2.02 | Page 2

Classify the following polynomial as monomial, binomial, trinomial. Which polynomial do not fit in any category?

 1000

Exercise 6.1 | Q 2.03 | Page 2

Classify the following polynomial as monomial, binomial, trinomial. Which polynomial do not fit in any category?

x + x2 + x3 + 4y4

Exercise 6.1 | Q 2.04 | Page 2

Classify the following polynomial as monomial, binomial, trinomial. Which polynomial do not fit in any category?

 7 + a + 5b

Exercise 6.1 | Q 2.05 | Page 2

Classify the following polynomial as monomial, binomial, trinomial. Which polynomial do not fit in any category?

2b − 3b2

Exercise 6.1 | Q 2.06 | Page 2

Classify the following polynomial as monomial, binomial, trinomial. Which polynomial do not fit in any category?

 2y − 3y2 + 4y3

Exercise 6.1 | Q 2.07 | Page 2

Classify the following polynomial as monomial, binomial, trinomial. Which polynomial do not fit in any category?

5x − 4y + 3x

Exercise 6.1 | Q 2.08 | Page 2

Classify the following polynomial as monomial, binomial, trinomial. Which polynomial do not fit in any category?

 4a − 15a2

Exercise 6.1 | Q 2.09 | Page 2

Classify the following polynomial as monomial, binomial, trinomial. Which polynomial do not fit in any category?

xy + yz + zt + tx

Exercise 6.1 | Q 2.1 | Page 2

Classify the following polynomial as monomial, binomial, trinomial. Which polynomial do not fit in any category?

 pqr

Exercise 6.1 | Q 2.11 | Page 2

Classify the following polynomial as monomial, binomial, trinomial. Which polynomial do not fit in any category?

p2q + pq2

Exercise 6.1 | Q 2.12 | Page 2

Classify the following polynomial as monomial, binomial, trinomial. Which polynomial do not fit in any category?

2p + 2q

Exercise 6.2 [Pages 5 - 6]

RD Sharma solutions for Mathematics [English] Class 8 6 Algebraic Expressions and Identities Exercise 6.2 [Pages 5 - 6]

Exercise 6.2 | Q 1.1 | Page 5

Add the following algebraic expression:

3a2b, − 4a2b, 9a2b

Exercise 6.2 | Q 1.2 | Page 5

Add the following algebraic expression:

\[\frac{2}{3}a, \frac{3}{5}a, - \frac{6}{5}a\]

Exercise 6.2 | Q 1.3 | Page 5

Add the following algebraic expression:

 4xy2 − 7x2y, 12x2y − 6xy2, − 3x2y +5xy2

Exercise 6.2 | Q 1.4 | Page 5

Add the following algebraic expression:

\[\frac{3}{2}a - \frac{5}{4}b + \frac{2}{5}c, \frac{2}{3}a - \frac{7}{2}b + \frac{7}{2}c, \frac{5}{3}a + \frac{5}{2}b - \frac{5}{4}c\]

Exercise 6.2 | Q 1.5 | Page 5

Add the following algebraic expression:

\[\frac{11}{2}xy + \frac{12}{5}y + \frac{13}{7}x, - \frac{11}{2}y - \frac{12}{5}x - \frac{13}{7}xy\]

Exercise 6.2 | Q 1.6 | Page 5

Add the following algebraic expression: \[\frac{7}{2} x^3 - \frac{1}{2} x^2 + \frac{5}{3}, \frac{3}{2} x^3 + \frac{7}{4} x^2 - x + \frac{1}{3}, \frac{3}{2} x^2 - \frac{5}{2}x - 2\]

Exercise 6.2 | Q 2.1 | Page 5

Subtract:

− 5xy from 12xy

Exercise 6.2 | Q 2.2 | Page 5

Subtract:

2a2 from − 7a2

Exercise 6.2 | Q 2.3 | Page 5

Subtract:

2a − b from 3a − 5b

Exercise 6.2 | Q 2.4 | Page 5

Subtract:

2x3 − 4x2 + 3x + 5 from 4x3 + x2 + x + 6

Exercise 6.2 | Q 2.5 | Page 5

Subtract:

\[\frac{2}{3} y^3 - \frac{2}{7} y^2 - 5 \text { from  }\frac{1}{3} y^3 + \frac{5}{7} y^2 + y - 2\]

Exercise 6.2 | Q 2.6 | Page 5

Subtract: 

\[\frac{3}{2}x - \frac{5}{4}y - \frac{7}{2}z \text { from }\frac{2}{3}x + \frac{3}{2}y - \frac{4}{3}z\]

Exercise 6.2 | Q 2.7 | Page 5

Subtract: 

\[x^2 y - \frac{4}{5}x y^2 + \frac{4}{3}xy \text { from } \frac{2}{3} x^2 y + \frac{3}{2}x y^2 - \frac{1}{3}xy\]

Exercise 6.2 | Q 2.8 | Page 5

Subtract: 

\[\frac{ab}{7} - \frac{35}{3}bc + \frac{6}{5}ac \text { from } \frac{3}{5}bc - \frac{4}{5}ac\]

Exercise 6.2 | Q 3.1 | Page 5

Take away:

\[\frac{6}{5} x^2 - \frac{4}{5} x^3 + \frac{5}{6} + \frac{3}{2}x \text { from  }\frac{x^3}{3} - \frac{5}{2} x^2 + \frac{3}{5}x + \frac{1}{4}\]

Exercise 6.2 | Q 3.2 | Page 5

Take away:

\[\frac{5 a^2}{2} + \frac{3 a^3}{2} + \frac{a}{3} - \frac{6}{5} \text { from } \frac{1}{3} a^3 - \frac{3}{4} a^2 - \frac{5}{2}\]

Exercise 6.2 | Q 3.3 | Page 5

Take away: 

\[\frac{7}{4} x^3 + \frac{3}{5} x^2 + \frac{1}{2}x + \frac{9}{2}\text {  from } \frac{7}{2} - \frac{x}{3} - \frac{x^2}{5}\]

Exercise 6.2 | Q 3.4 | Page 5

Take away: 

\[\frac{y^3}{3} + \frac{7}{3} y^2 + \frac{1}{2}y + \frac{1}{2} \text { from } \frac{1}{3} - \frac{5}{3} y^2\]

Exercise 6.2 | Q 3.5 | Page 5

Take away: 

\[\frac{2}{3}ac - \frac{5}{7}ab + \frac{2}{3}bc\text { from } \frac{3}{2}ab - \frac{7}{4}ac - \frac{5}{6}bc\]

Exercise 6.2 | Q 4 | Page 6

Subtract 3x − 4y − 7z from the sum of x − 3y + 2z and − 4x + 9y − 11z.

Exercise 6.2 | Q 5 | Page 6

Subtract the sum of 3l − 4m − 7n2 and 2l + 3m − 4n2 from the sum of 9l + 2m − 3n2 and − 3l + m + 4n2 .....

Exercise 6.2 | Q 6 | Page 6

Subtract the sum of 2x − x2 + 5 and − 4x − 3 + 7x2 from 5.

Exercise 6.2 | Q 7.1 | Page 6

Simplify the following:

 x2 − 3x + 5 −  \[\frac{1}{2}\] (3x2 − 5x + 7)

Exercise 6.2 | Q 7.2 | Page 6

Simplify the following:

 [5 − 3x + 2y − (2x − y)] − (3x − 7y + 9)

Exercise 6.2 | Q 7.3 | Page 6

Simplify the following:

\[\frac{11}{2} x^2 y - \frac{9}{4}x y^2 + \frac{1}{4}xy - \frac{1}{14} y^2 x + \frac{1}{15}y x^2 + \frac{1}{2}xy\]

Exercise 6.2 | Q 7.4 | Page 6

Simplify the following:

\[\left( \frac{1}{3} y^2 - \frac{4}{7}y + 11 \right) - \left( \frac{1}{7}y - 3 + 2 y^2 \right) - \left( \frac{2}{7}y - \frac{2}{3} y^2 + 2 \right)\]

Exercise 6.2 | Q 7.5 | Page 6

Simplify the following: \[- \frac{1}{2} a^2 b^2 c + \frac{1}{3}a b^2 c - \frac{1}{4}ab c^2 - \frac{1}{5}c b^2 a^2 + \frac{1}{6}c b^2 a - \frac{1}{7} c^2 ab + \frac{1}{8}c a^2 b .\]

Exercise 6.3 [Pages 13 - 14]

RD Sharma solutions for Mathematics [English] Class 8 6 Algebraic Expressions and Identities Exercise 6.3 [Pages 13 - 14]

Exercise 6.3 | Q 1 | Page 13

Find each of the following product:
5x2 × 4x3

Exercise 6.3 | Q 2 | Page 13

Find each of the following product:
−3a2 × 4b4

Exercise 6.3 | Q 3 | Page 13

Find each of the following product:
(−5xy) × (−3x2yz)

Exercise 6.3 | Q 4 | Page 13

Find each of the following product: 

\[\frac{1}{4}xy \times \frac{2}{3} x^2 y z^2\]

Exercise 6.3 | Q 5 | Page 14

Find each of the following product: 

\[\left( - \frac{7}{5}x y^2 z \right) \times \left( \frac{13}{3} x^2 y z^2 \right)\]

Exercise 6.3 | Q 6 | Page 14

Find each of the following product: \[\left( \frac{- 24}{25} x^3 z \right) \times \left( - \frac{15}{16}x z^2 y \right)\]

Exercise 6.3 | Q 7 | Page 14

Find each of the following product:

\[\left( - \frac{1}{27} a^2 b^2 \right) \times \left( \frac{9}{2} a^3 b^2 c^2 \right)\]

Exercise 6.3 | Q 8 | Page 14

Find each of the following product: \[( - 7xy) \times \left( \frac{1}{4} x^2 yz \right)\]

Exercise 6.3 | Q 9 | Page 14

Find each of the following product:
(7ab) × (−5ab2c) × (6abc2)

Exercise 6.3 | Q 10 | Page 14

Find each of the following product:
(−5a) × (−10a2) × (−2a3)

Exercise 6.3 | Q 11 | Page 14

Find each of the following product:
(−4x2) × (−6xy2) × (−3yz2)

Exercise 6.3 | Q 12 | Page 14

Find each of the following product:

\[\left( - \frac{2}{7} a^4 \right) \times \left( - \frac{3}{4} a^2 b \right) \times \left( - \frac{14}{5} b^2 \right)\]

Exercise 6.3 | Q 13 | Page 14

Find each of the following product: \[\left( \frac{7}{9}a b^2 \right) \times \left( \frac{15}{7}a c^2 b \right) \times \left( - \frac{3}{5} a^2 c \right)\]

Exercise 6.3 | Q 14 | Page 14

Find each of the following product: \[\left( \frac{4}{3} u^2 vw \right) \times \left( - 5uv w^2 \right) \times \left( \frac{1}{3} v^2 wu \right)\]

Exercise 6.3 | Q 15 | Page 14

Find each of the following product:

\[\left( 0 . 5x \right) \times \left( \frac{1}{3}x y^2 z^4 \right) \times \left( 24 x^2 yz \right)\]

Exercise 6.3 | Q 16 | Page 14

Find each of the following product: \[\left( \frac{4}{3}p q^2 \right) \times \left( - \frac{1}{4} p^2 r \right) \times \left( 16 p^2 q^2 r^2 \right)\]

Exercise 6.3 | Q 17 | Page 14

Find each of the following product:
(2.3xy) × (0.1x) × (0.16)

Exercise 6.3 | Q 18 | Page 14

Express each of the following product as a monomials and verify the result in each case for x = 1:
(3x) × (4x) × (−5x)

Exercise 6.3 | Q 19 | Page 14

Express each of the following product as a monomials and verify the result in each case for x = 1:
(4x2) × (−3x) × \[\left( \frac{4}{5} x^3 \right)\]

Exercise 6.3 | Q 20 | Page 14

Express each of the following product as a monomials and verify the result in each case for x = 1:
(5x4) × (x2)3 × (2x)2

Exercise 6.3 | Q 21 | Page 14

Express each of the following product as a monomials and verify the result in each case for x = 1:
(x2)3 × (2x) × (−4x) × (5)

Exercise 6.3 | Q 22 | Page 14

Write down the product of −8x2y6 and −20xy. Verify the product for x = 2.5, y = 1.

Exercise 6.3 | Q 23 | Page 14

Evaluate (3.2x6y3) × (2.1x2y2) when x = 1 and y = 0.5.

Exercise 6.3 | Q 24 | Page 14

Find the value of (5x6) × (−1.5x2y3) × (−12xy2) when x = 1, y = 0.5.

Exercise 6.3 | Q 25 | Page 14

Evaluate (2.3a5b2) × (1.2a2b2) when a = 1 and b = 0.5.

Exercise 6.3 | Q 26 | Page 14

Evaluate (−8x2y6) × (−20xy) for x = 2.5 and y = 1.

Exercise 6.3 | Q 27 | Page 14

Express each of the following product as a monomials and verify the result for x = 1, y = 2:
(−xy3) × (yx3) × (xy)

Exercise 6.3 | Q 28 | Page 14

Express each of the following product as a monomials and verify the result for x = 1, y = 2: \[\left( \frac{1}{8} x^2 y^4 \right) \times \left( \frac{1}{4} x^4 y^2 \right) \times \left( xy \right) \times 5\]

Exercise 6.3 | Q 29 | Page 14

Express each of the following product as a monomials and verify the result for x = 1, y = 2:

\[\left( \frac{2}{5} a^2 b \right) \times \left( - 15 b^2 ac \right) \times \left( - \frac{1}{2} c^2 \right)\]
Exercise 6.3 | Q 30 | Page 14

Express each of the following product as a monomials and verify the result for x = 1, y = 2: \[\left( - \frac{4}{7} a^2 b \right) \times \left( - \frac{2}{3} b^2 c \right) \times \left( - \frac{7}{6} c^2 a \right)\]

Exercise 6.3 | Q 31 | Page 14

Express each of the following product as a monomials and verify the result for x = 1, y = 2:

\[\left( \frac{4}{9}ab c^3 \right) \times \left( - \frac{27}{5} a^3 b^2 \right) \times \left( - 8 b^3 c \right)\]

 
Exercise 6.3 | Q 32 | Page 14

Evaluate each of the following when x = 2, y = −1.

\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]

Exercise 6.3 | Q 33 | Page 14

Evaluate each of the following when x = 2, y = −1. 

\[\left( \frac{3}{5} x^2 y \right) \times \left( - \frac{15}{4}x y^2 \right) \times \left( \frac{7}{9} x^2 y^2 \right)\]

Exercise 6.4 [Page 21]

RD Sharma solutions for Mathematics [English] Class 8 6 Algebraic Expressions and Identities Exercise 6.4 [Page 21]

Exercise 6.4 | Q 1 | Page 21

Find the following product:
2a3(3a + 5b)

Exercise 6.4 | Q 2 | Page 21

Find the following product:
−11a(3a + 2b)

Exercise 6.4 | Q 3 | Page 21

Find the following product:
−5a(7a − 2b)

Exercise 6.4 | Q 4 | Page 21

Find the following product:
−11y2(3y + 7)

Exercise 6.4 | Q 5 | Page 21

Find the following product: \[\frac{6x}{5}( x^3 + y^3 )\]

Exercise 6.4 | Q 6 | Page 21

xy(x3 − y3)

Exercise 6.4 | Q 7 | Page 21

Find the following product:
0.1y(0.1x5 + 0.1y)

Exercise 6.4 | Q 8 | Page 21

Find the following product: \[\left( - \frac{7}{4}a b^2 c - \frac{6}{25} a^2 c^2 \right)( - 50 a^2 b^2 c^2 )\]

Exercise 6.4 | Q 9 | Page 21

Find the following product: \[- \frac{8}{27}xyz\left( \frac{3}{2}xy z^2 - \frac{9}{4}x y^2 z^3 \right)\]

Exercise 6.4 | Q 10 | Page 21

Find the following product: \[- \frac{4}{27}xyz\left( \frac{9}{2} x^2 yz - \frac{3}{4}xy z^2 \right)\]

Exercise 6.4 | Q 11 | Page 21

Find the following product:
1.5x(10x2y − 100xy2)

Exercise 6.4 | Q 12 | Page 21

Find the following product:
4.1xy(1.1x − y)

Exercise 6.4 | Q 13 | Page 21

Find the following product:
250.5xy \[\left( xz + \frac{y}{10} \right)\]

Exercise 6.4 | Q 14 | Page 21

Find the following product: \[\frac{7}{5} x^2 y\left( \frac{3}{5}x y^2 + \frac{2}{5}x \right)\]

Exercise 6.4 | Q 15 | Page 21

Find the following product: \[\frac{4}{3}a( a^2 + b^2 - 3 c^2 )\]

Exercise 6.4 | Q 16 | Page 21

Find the product 24x2 (1 − 2x) and evaluate its value for x = 3.

Exercise 6.4 | Q 17 | Page 21

Find the product −3y(xy + y2) and find its value for x = 4 and y = 5.

Exercise 6.4 | Q 18 | Page 21

Multiply \[- \frac{3}{2} x^2 y^3 by (2x - y)\] and verify the answer for x = 1 and y = 2.

Exercise 6.4 | Q 19.1 | Page 21

Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05: 15y2(2 − 3x)

Exercise 6.4 | Q 19.2 | Page 21

Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05: −3x(y2 + z2)

Exercise 6.4 | Q 19.3 | Page 21

Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05: z2(x − y)

Exercise 6.4 | Q 19.4 | Page 21

Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05:

xz(x2 + y2)

Exercise 6.4 | Q 20.01 | Page 21

Simplify: 2x2(x3 − x) − 3x(x4 + 2x) − 2(x4 − 3x2)

Exercise 6.4 | Q 20.02 | Page 21

Simplify: x3y(x2 − 2x) + 2xy(x3 − x4)

Exercise 6.4 | Q 20.03 | Page 21

Simplify: 3a2 + 2(a + 2) − 3a(2a + 1)

Exercise 6.4 | Q 20.04 | Page 21

Simplify: x(x + 4) + 3x(2x2 − 1) + 4x2 + 4

Exercise 6.4 | Q 20.05 | Page 21

Simplify:  a(b − c) − b(c − a) − c(a − b)

Exercise 6.4 | Q 20.06 | Page 21

Simplify: a(b − c) + b(c − a) + c(a − b)

Exercise 6.4 | Q 20.07 | Page 21

Simplify: 4ab(a − b) − 6a2(b − b2) − 3b2(2a2 − a) + 2ab(b − a)

Exercise 6.4 | Q 20.08 | Page 21

Simplify:  x2(x2 + 1) − x3(x + 1) − x(x3 − x)

Exercise 6.4 | Q 20.09 | Page 21

Simplify:   2a2 + 3a(1 − 2a3) + a(a + 1)

Exercise 6.4 | Q 20.1 | Page 21

Simplify: a2(2a − 1) + 3a + a3 − 8

Exercise 6.4 | Q 20.11 | Page 21

Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]

Exercise 6.4 | Q 20.12 | Page 21

Simplify: a2b(a − b2) + ab2(4ab − 2a2) − a3b(1 − 2b)

Exercise 6.4 | Q 20.13 | Page 21

Simplify:  a2b(a3 − a + 1) − ab(a4 − 2a2 + 2a) − b (a3 − a2 − 1)

Exercise 6.5 [Pages 30 - 31]

RD Sharma solutions for Mathematics [English] Class 8 6 Algebraic Expressions and Identities Exercise 6.5 [Pages 30 - 31]

Exercise 6.5 | Q 1 | Page 30

Multiply:
(5x + 3) by (7x + 2)

Exercise 6.5 | Q 2 | Page 30

Multiply:
(2x + 8) by (x − 3)

Exercise 6.5 | Q 3 | Page 30

Multiply:
(7x + y) by (x + 5y)

Exercise 6.5 | Q 4 | Page 30

Multiply:
(a − 1) by (0.1a2 + 3)

Exercise 6.5 | Q 5 | Page 30

Multiply:
(3x2 + y2) by (2x2 + 3y2)

Exercise 6.5 | Q 6 | Page 30

Multiply: \[\left( \frac{3}{5}x + \frac{1}{2}y \right) by \left( \frac{5}{6}x + 4y \right)\]

Exercise 6.5 | Q 7 | Page 31

Multiply:
(x6 − y6) by (x2 + y2)

Exercise 6.5 | Q 8 | Page 31

Multiply:
(x2 + y2) by (3a + 2b)

Exercise 6.5 | Q 9 | Page 31

Multiply:
[−3d + (−7f)] by (5d + f)

Exercise 6.5 | Q 10 | Page 31

Multiply:
(0.8a − 0.5b) by (1.5a − 3b)

Exercise 6.5 | Q 11 | Page 31

Multiply:
(2x2y2 − 5xy2) by (x2 − y2)

Exercise 6.5 | Q 12 | Page 31

Multiply: \[\left( \frac{x}{7} + \frac{x^2}{2} \right)by\left( \frac{2}{5} + \frac{9x}{4} \right)\]

Exercise 6.5 | Q 13 | Page 31

Multiply: \[\left( - \frac{a}{7} + \frac{a^2}{9} \right)by\left( \frac{b}{2} - \frac{b^2}{3} \right)\].

Exercise 6.5 | Q 14 | Page 31

Multiply:
(3x2y − 5xy2) by  \[\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\].

Exercise 6.5 | Q 15 | Page 31

Multiply:
(2x2 − 1) by (4x3 + 5x2)

Exercise 6.5 | Q 16 | Page 31

(2xy + 3y2) (3y2 − 2)

Exercise 6.5 | Q 17 | Page 31

Find the following product and verify the result for x = − 1, y = − 2:
(3x − 5y) (x + y)

Exercise 6.5 | Q 18 | Page 31

Find the following product and verify the result for x = − 1, y = − 2:
(x2y − 1) (3 − 2x2y)

Exercise 6.5 | Q 19 | Page 31

Find the following product and verify the result for x = − 1, y = − 2: \[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]

Exercise 6.5 | Q 20 | Page 31

Simplify:
x2(x + 2y) (x − 3y)

Exercise 6.5 | Q 21 | Page 31

Simplify:
(x2 − 2y2) (x + 4y) x2y2

Exercise 6.5 | Q 22 | Page 31

Simplify:
a2b2(a + 2b)(3a + b)

Exercise 6.5 | Q 23 | Page 31

Simplify:
x2(x − y) y2(x + 2y)

Exercise 6.5 | Q 24 | Page 31

Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)

Exercise 6.5 | Q 25 | Page 31

Simplify:
(5x + 3)(x − 1)(3x − 2)

Exercise 6.5 | Q 26 | Page 31

Simplify:
(5 − x)(6 − 5x)( 2 − x)

Exercise 6.5 | Q 27 | Page 31

Simplify:
(2x2 + 3x − 5)(3x2 − 5x + 4)

Exercise 6.5 | Q 28 | Page 31

Simplify:
(3x − 2)(2x − 3) + (5x − 3)(x + 1)

Exercise 6.5 | Q 29 | Page 31

Simplify:
(5x − 3)(x + 2) − (2x + 5)(4x − 3)

Exercise 6.5 | Q 30 | Page 31

Simplify:
(3x + 2y)(4x + 3y) − (2x − y)(7x − 3y)

Exercise 6.5 | Q 31 | Page 31

Simplify:
(x2 − 3x + 2)(5x − 2) − (3x2 + 4x − 5)(2x − 1)

Exercise 6.5 | Q 32 | Page 31

Simplify:
(x3 − 2x2 + 3x − 4) (x −1) − (2x − 3)(x2 − x + 1)

Exercise 6.6 [Pages 43 - 44]

RD Sharma solutions for Mathematics [English] Class 8 6 Algebraic Expressions and Identities Exercise 6.6 [Pages 43 - 44]

Exercise 6.6 | Q 1.01 | Page 43

Write the following square of binomial as trinomial: (x + 2)2

Exercise 6.6 | Q 1.02 | Page 43

Write the following square of binomial as trinomial:  (8a + 3b)2

Exercise 6.6 | Q 1.03 | Page 43

Write the following square of binomial as trinomial:  (2m + 1)2

Exercise 6.6 | Q 1.04 | Page 43

Write the following square of binomial as trinomial:  \[\left( 9a + \frac{1}{6} \right)^2\]

Exercise 6.6 | Q 1.05 | Page 43

Write the following square of binomial as trinomial: 

\[\left( x + \frac{x^2}{2} \right)^2\]

Exercise 6.6 | Q 1.06 | Page 43

Write the following square of binomial as trinomial:  \[\left( \frac{x}{4} - \frac{y}{3} \right)\]

Exercise 6.6 | Q 1.07 | Page 43

Write the following square of binomial as trinomial:  \[\left( 3x - \frac{1}{3x} \right)^2\]

Exercise 6.6 | Q 1.08 | Page 43

Write the following square of binomial as trinomial:  \[\left( \frac{x}{y} - \frac{y}{x} \right)^2\]

Exercise 6.6 | Q 1.09 | Page 43

Write the following square of binomial as trinomial: \[\left( \frac{3a}{2} - \frac{5b}{4} \right)^2\]

Exercise 6.6 | Q 1.1 | Page 43

Write the following square of binomial as trinomial: (a2b − bc2)2

Exercise 6.6 | Q 1.11 | Page 43

Write the following square of binomial as trinomial:  \[\left( \frac{2a}{3b} + \frac{2b}{3a} \right)^2\]

Exercise 6.6 | Q 1.12 | Page 43

Write the following square of binomial as trinomial:  (x2 − ay)2

Exercise 6.6 | Q 2.1 | Page 43

Find the product of the following binomial: (2x + y)(2x + y)

Exercise 6.6 | Q 2.2 | Page 43

Find the product of the following binomial:  (a + 2b)(a − 2b)

Exercise 6.6 | Q 2.3 | Page 43

Find the product of the following binomial:  (a2 + bc)(a− bc)

Exercise 6.6 | Q 2.4 | Page 43

Find the product of the following binomial: \[\left( \frac{4x}{5} - \frac{3y}{4} \right)\left( \frac{4x}{5} + \frac{3y}{4} \right)\]

Exercise 6.6 | Q 2.5 | Page 43

Find the product of the following binomial: \[\left( 2x + \frac{3}{y} \right)\left( 2x - \frac{3}{y} \right)\]

Exercise 6.6 | Q 2.6 | Page 43

Find the product of the following binomial: (2a3 + b3)(2a3 − b3)

Exercise 6.6 | Q 2.7 | Page 43

Find the product of the following binomial: \[\left( x^4 + \frac{2}{x^2} \right)\left( x^4 - \frac{2}{x^2} \right)\]

Exercise 6.6 | Q 2.8 | Page 43

Find the product of the following binomial: \[\left( x^3 + \frac{1}{x^3} \right)\left( x^3 - \frac{1}{x^3} \right)\]

Exercise 6.6 | Q 3.1 | Page 43

Using the formula for squaring a binomial, evaluate the following:  (102)2

Exercise 6.6 | Q 3.2 | Page 43

Using the formula for squaring a binomial, evaluate the following: (99)2

Exercise 6.6 | Q 3.3 | Page 43

Using the formula for squaring a binomial, evaluate the following:  (1001)2

Exercise 6.6 | Q 3.4 | Page 43

Using the formula for squaring a binomial, evaluate the following:  (999)2

Exercise 6.6 | Q 3.5 | Page 43

Using the formula for squaring a binomial, evaluate the following:  (703)2

Exercise 6.6 | Q 4.1 | Page 43

Simplify the following using the formula: (a − b)(a + b) = a2 − b2: (82)2 − (18)2

Exercise 6.6 | Q 4.2 | Page 43

Simplify the following using the formula: (a − b)(a + b) = a2 − b2: (467)2 − (33)2

Exercise 6.6 | Q 4.3 | Page 43

Simplify the following using the formula: (a − b)(a + b) = a2 − b2: (79)2 − (69)2

Exercise 6.6 | Q 4.4 | Page 43

Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 197 × 203

Exercise 6.6 | Q 4.5 | Page 43

Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 113 × 87

Exercise 6.6 | Q 4.6 | Page 43

Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 95 × 105

Exercise 6.6 | Q 4.7 | Page 43

Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 1.8 × 2.2

Exercise 6.6 | Q 4.8 | Page 43

Simplify the following using the formula: (a − b)(a + b) = a2 − b2:  9.8 × 10.2

Exercise 6.6 | Q 5.1 | Page 43

Simplify the following using the identities: \[\frac{{58}^2 - {42}^2}{16}\]

Exercise 6.6 | Q 5.2 | Page 43

Simplify the following using the identities: 178 × 178 − 22 × 22

Exercise 6.6 | Q 5.3 | Page 43

Simplify the following using the identities: \[\frac{198 \times 198 - 102 \times 102}{96}\]

Exercise 6.6 | Q 5.4 | Page 43

Simplify the following using the identities:  1.73 × 1.73 − 0.27 × 0.27

Exercise 6.6 | Q 5.5 | Page 43

Simplify the following using the identities: \[\frac{8 . 63 \times 8 . 63 - 1 . 37 \times 1 . 37}{0 . 726}\]

Exercise 6.6 | Q 6.1 | Page 43

Find the value of x, if 4x = (52)2 − (48)2.

Exercise 6.6 | Q 6.2 | Page 43

Find the value of x, if 14x = (47)2 − (33)2.

Exercise 6.6 | Q 6.3 | Page 43

Find the value of x, if 5x = (50)2 − (40)2.

Exercise 6.6 | Q 7 | Page 43

If \[x + \frac{1}{x} = 20,\]find the value of \[x^2 + \frac{1}{x^2} .\].

Exercise 6.6 | Q 8 | Page 43

If \[x - \frac{1}{x} = 3,\]  find the values of \[x^2 + \frac{1}{x^2}\] and \[x^4 + \frac{1}{x^4} .\]

Exercise 6.6 | Q 9 | Page 43

If \[x^2 + \frac{1}{x^2} = 18,\]  find the values of \[x + \frac{1}{x} \text { and } x - \frac{1}{x} .\]

Exercise 6.6 | Q 10 | Page 43

If x + y = 4 and xy = 2, find the value of x2 + y2

Exercise 6.6 | Q 11 | Page 43

If x − y = 7 and xy = 9, find the value of x2 + y2

Exercise 6.6 | Q 12 | Page 44

If 3x + 5y = 11 and xy = 2, find the value of 9x2 + 25y2

Exercise 6.6 | Q 13.1 | Page 44

Find the value of the following expression: 16x2 + 24x + 9, when \[x = \frac{7}{4}\]

Exercise 6.6 | Q 13.2 | Page 44

Find the value of the following expression:  64x2 + 81y2 + 144xy, when x = 11 and \[y = \frac{4}{3}\]

Exercise 6.6 | Q 13.3 | Page 44

Find the value of the following expression:  81x2 + 16y2 − 72xy, when \[x = \frac{2}{3}\] and  \[y = \frac{3}{4}\]

Exercise 6.6 | Q 14 | Page 44

If \[x + \frac{1}{x} = 9,\]  find the value of \[x^4 + \frac{1}{x^4} .\]

Exercise 6.6 | Q 15 | Page 44

If \[x + \frac{1}{x} = 12,\]  find the value of \[x - \frac{1}{x} .\]

Exercise 6.6 | Q 16 | Page 44

If 2x + 3y = 14 and 2x − 3y = 2, find the value of xy.
[Hint: Use (2x + 3y)2 − (2x − 3y)2 = 24xy]

Exercise 6.6 | Q 17.1 | Page 44

If x2 + y2 = 29 and xy = 2, find the value of x + y.

Exercise 6.6 | Q 17.2 | Page 44

If x2 + y2 = 29 and xy = 2, find the value of x - y.

Exercise 6.6 | Q 17.3 | Page 44

If x2 + y2 = 29 and xy = 2, find the value of x4 + y4 .

Exercise 6.6 | Q 18.1 | Page 44

What must be added to the following expression to make it a whole square? 

4x2 − 12x + 7

Exercise 6.6 | Q 18.2 | Page 44

What must be added to the following expression to make it a whole square? 

4x2 − 20x + 20

Exercise 6.6 | Q 19.1 | Page 44

Simplify : (x − y)(x + y) (x2 + y2)(x4 + y2)

Exercise 6.6 | Q 19.2 | Page 44

Simplify : (2x − 1)(2x + 1)(4x2 + 1)(16x4 + 1)

Exercise 6.6 | Q 19.3 | Page 44

Simplify : (4m − 8n)2 + (7m + 8n)2

Exercise 6.6 | Q 19.4 | Page 44

Simplify : (2.5p − 1.5q)2 − (1.5p − 2.5q)2

Exercise 6.6 | Q 19.5 | Page 44

Simplify :  (m2 − n2m)2 + 2m3n2

Exercise 6.6 | Q 20.1 | Page 44

Show that:  (3x + 7)2 − 84x = (3x − 7)2

Exercise 6.6 | Q 20.2 | Page 44

Show that:  (9a − 5b)2 + 180ab = (9a + 5b)

Exercise 6.6 | Q 20.3 | Page 44

Show that: \[\left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2mn = \frac{16 m^2}{9} + \frac{9 n^2}{16}\]

Exercise 6.6 | Q 20.4 | Page 44

Show that:  (4pq + 3q)2 − (4pq − 3q)2 = 48pq2

Exercise 6.6 | Q 20.5 | Page 44

Show that:  (a − b)(a + b) + (b − c)(b + c) + (c − a)( c + a) = 0

Exercise 6.7 [Page 47]

RD Sharma solutions for Mathematics [English] Class 8 6 Algebraic Expressions and Identities Exercise 6.7 [Page 47]

Exercise 6.7 | Q 1.01 | Page 47

Find the following product: (x + 4) (x + 7)

Exercise 6.7 | Q 1.02 | Page 47

Find the following product:  (x − 11) (x + 4)

Exercise 6.7 | Q 1.03 | Page 47

Find the following product: (x + 7) (x − 5)

Exercise 6.7 | Q 1.04 | Page 47

Find the following product: (x − 3) ( x − 2)

Exercise 6.7 | Q 1.05 | Page 47

Find the following product: (y2 − 4) (y2 − 3)

Exercise 6.7 | Q 1.06 | Page 47

Find the following product: \[\left( x + \frac{4}{3} \right)\left( x + \frac{3}{4} \right)\]

Exercise 6.7 | Q 1.07 | Page 47

Find the following product: (3x + 5) (3x + 11)

Exercise 6.7 | Q 1.08 | Page 47

Find the following product:  (2x2 − 3) (2x2 + 5)

Exercise 6.7 | Q 1.09 | Page 47

Find the following product: (z2 + 2) (z2 − 3)

Exercise 6.7 | Q 1.1 | Page 47

Find the following product: (3x − 4y) (2x − 4y)

Exercise 6.7 | Q 1.11 | Page 47

Find the following product:  (3x2 − 4xy) (3x2 − 3xy)

Exercise 6.7 | Q 1.12 | Page 47

Find the following product: \[\left( x + \frac{1}{5} \right)(x + 5)\]

Exercise 6.7 | Q 1.13 | Page 47

Find the following product: \[\left( z + \frac{3}{4} \right)\left( z + \frac{4}{3} \right)\]

Exercise 6.7 | Q 1.14 | Page 47

Find the following product:  (x2 + 4) (x2 + 9)

Exercise 6.7 | Q 1.15 | Page 47

Find the following product: (y2 + 12) (y2 + 6)

Exercise 6.7 | Q 1.16 | Page 47

Find the following product: \[\left( y^2 + \frac{5}{7} \right)\left( y^2 - \frac{14}{5} \right)\]

Exercise 6.7 | Q 1.17 | Page 47

Find the following product:  (p2 + 16) \[\left( p^2 - \frac{1}{4} \right)\]

Exercise 6.7 | Q 2.1 | Page 47

Evaluate the following: 102 × 106

Exercise 6.7 | Q 2.2 | Page 47

Evaluate the following: 109 × 107

Exercise 6.7 | Q 2.3 | Page 47

Evaluate the following: 35 × 37

Exercise 6.7 | Q 2.4 | Page 47

Evaluate the following: 53 × 55

Exercise 6.7 | Q 2.5 | Page 47

Evaluate the following: 103 × 96

Exercise 6.7 | Q 2.6 | Page 47

Evaluate the following: 34 × 36

Exercise 6.7 | Q 2.7 | Page 47

Evaluate the following: 994 × 1006

Solutions for 6: Algebraic Expressions and Identities

Exercise 6.1Exercise 6.2Exercise 6.3Exercise 6.4Exercise 6.5Exercise 6.6Exercise 6.7
RD Sharma solutions for Mathematics [English] Class 8 chapter 6 - Algebraic Expressions and Identities - Shaalaa.com

RD Sharma solutions for Mathematics [English] Class 8 chapter 6 - Algebraic Expressions and Identities

Shaalaa.com has the CBSE Mathematics Mathematics [English] Class 8 CBSE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 8 CBSE 6 (Algebraic Expressions and Identities) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Mathematics [English] Class 8 chapter 6 Algebraic Expressions and Identities are Algebraic Expressions, Terms, Factors and Coefficients of Expression, Addition of Algebraic Expressions, Multiplication of Algebraic Expressions, Multiplying Monomial by Monomials, Multiplying a Monomial by a Binomial, Like and Unlike Terms, Subtraction of Algebraic Expressions, Multiplying a Monomial by a Trinomial, Multiplying a Binomial by a Binomial, Multiplying a Binomial by a Trinomial, Concept of Identity, Expansion of (a + b)2 = a2 + 2ab + b2, Expansion of (a - b)2 = a2 - 2ab + b2, Expansion of (a + b)(a - b) = a2-b2, Expansion of (x + a)(x + b), Types of Algebraic Expressions as Monomials, Binomials, Trinomials, and Polynomials.

Using RD Sharma Mathematics [English] Class 8 solutions Algebraic Expressions and Identities exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE Mathematics [English] Class 8 students prefer RD Sharma Textbook Solutions to score more in exams.

Get the free view of Chapter 6, Algebraic Expressions and Identities Mathematics [English] Class 8 additional questions for Mathematics Mathematics [English] Class 8 CBSE, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×