Advertisements
Advertisements
प्रश्न
Simplify:
(5x − 3)(x + 2) − (2x + 5)(4x − 3)
उत्तर
To simplify, we will proceed as follows:
\[\left( 5x - 3 \right)\left( x + 2 \right) - \left( 2x + 5 \right)\left( 4x - 3 \right)\]
\[ = \left[ \left( 5x - 3 \right)\left( x + 2 \right) \right] - \left[ \left( 2x + 5 \right)\left( 4x - 3 \right) \right]\]
\[= \left[ 5x\left( x + 2 \right) - 3\left( x + 2 \right) \right] - \left[ 2x\left( 4x - 3 \right) + 5\left( 4x - 3 \right) \right]\] (Distributive law)
\[= 5 x^2 + 10x - 3x - 6 - 8 x^2 + 6x - 20x + 15\]
\[= 5 x^2 - 8 x^2 + 10x - 3x + 6x - 20x - 6 + 15\] (Rearranging)
\[= 5 x^2 - 8 x^2 + 10x - 3x + 6x - 20x - 6 + 15\]
\[ = - 3 x^2 - 7x + 9\] (Combining like terms)
Hence, the answer is \[- 3 x^2 - 7x + 9\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[( - 7xy) \times \left( \frac{1}{4} x^2 yz \right)\]
Find each of the following product:
(7ab) × (−5ab2c) × (6abc2)
Express each of the following product as a monomials and verify the result in each case for x = 1:
(3x) × (4x) × (−5x)
Express each of the following product as a monomials and verify the result in each case for x = 1:
(4x2) × (−3x) × \[\left( \frac{4}{5} x^3 \right)\]
Find the following product:
4.1xy(1.1x − y)
Find the product 24x2 (1 − 2x) and evaluate its value for x = 3.
Simplify: x2(x2 + 1) − x3(x + 1) − x(x3 − x)
Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]
Multiply:
(0.8a − 0.5b) by (1.5a − 3b)
Simplify:
(5 − x)(6 − 5x)( 2 − x)