Advertisements
Advertisements
प्रश्न
Simplify:
(5x − 3)(x + 2) − (2x + 5)(4x − 3)
उत्तर
To simplify, we will proceed as follows:
\[\left( 5x - 3 \right)\left( x + 2 \right) - \left( 2x + 5 \right)\left( 4x - 3 \right)\]
\[ = \left[ \left( 5x - 3 \right)\left( x + 2 \right) \right] - \left[ \left( 2x + 5 \right)\left( 4x - 3 \right) \right]\]
\[= \left[ 5x\left( x + 2 \right) - 3\left( x + 2 \right) \right] - \left[ 2x\left( 4x - 3 \right) + 5\left( 4x - 3 \right) \right]\] (Distributive law)
\[= 5 x^2 + 10x - 3x - 6 - 8 x^2 + 6x - 20x + 15\]
\[= 5 x^2 - 8 x^2 + 10x - 3x + 6x - 20x - 6 + 15\] (Rearranging)
\[= 5 x^2 - 8 x^2 + 10x - 3x + 6x - 20x - 6 + 15\]
\[ = - 3 x^2 - 7x + 9\] (Combining like terms)
Hence, the answer is \[- 3 x^2 - 7x + 9\].
APPEARS IN
संबंधित प्रश्न
Express each of the following product as a monomials and verify the result in each case for x = 1:
(3x) × (4x) × (−5x)
Find the following product:
−11a(3a + 2b)
Find the following product: \[\frac{4}{3}a( a^2 + b^2 - 3 c^2 )\]
Multiply:
(5x + 3) by (7x + 2)
Show that: (3x + 7)2 − 84x = (3x − 7)2
Show that: (9a − 5b)2 + 180ab = (9a + 5b)2
Show that: \[\left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2mn = \frac{16 m^2}{9} + \frac{9 n^2}{16}\]
Multiply:
16xy × 18xy
Multiply:
(4x + 5y) × (9x + 7y)
Solve the following equation.
6x − 1 = 3x + 8