Advertisements
Advertisements
प्रश्न
Find the following product:
−11a(3a + 2b)
उत्तर
To find the product, we will use distributive law as follows:
\[- 11a\left( 3a + 2b \right)\]
\[ = \left( - 11a \right) \times 3a + \left( - 11a \right) \times 2b\]
\[ = \left( - 11 \times 3 \right) \times \left( a \times a \right) + \left( - 11 \times 2 \right) \times \left( a \times b \right)\]
\[ = \left( - 33 \right) \times \left( a^{1 + 1} \right) + \left( - 22 \right) \times \left( a \times b \right)\]
\[ = - 33 a^2 - 22ab\]
Thus, the answer is \[- 33 a^2 - 22ab\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
(−5a) × (−10a2) × (−2a3)
Find each of the following product: \[\left( \frac{4}{3}p q^2 \right) \times \left( - \frac{1}{4} p^2 r \right) \times \left( 16 p^2 q^2 r^2 \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(5x4) × (x2)3 × (2x)2
Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]
Multiply:
(7x + y) by (x + 5y)
Multiply:
(2x2y2 − 5xy2) by (x2 − y2)
(2xy + 3y2) (3y2 − 2)
Simplify:
(5x + 3)(x − 1)(3x − 2)
Simplify:
(3x + 2y)(4x + 3y) − (2x − y)(7x − 3y)
Multiply:
23xy2 × 4yz2