Advertisements
Advertisements
प्रश्न
Simplify:
(5x + 3)(x − 1)(3x − 2)
उत्तर
To simplify, we will proceed as follows:
\[\left( 5x + 3 \right)\left( x - 1 \right)\left( 3x - 2 \right)\]
\[ = \left[ \left( 5x + 3 \right)\left( x - 1 \right) \right]\left( 3x - 2 \right)\]
\[= \left[ 5x\left( x - 1 \right) + 3\left( x - 1 \right) \right]\left( 3x - 2 \right)\] (Distributive law)
\[= \left[ 5 x^2 - 5x + 3x - 3 \right]\left( 3x - 2 \right)\]
\[ = \left[ 5 x^2 - 2x - 3 \right]\left( 3x - 2 \right)\]
\[ = 3x\left( 5 x^2 - 2x - 3 \right) - 2\left( 5 x^2 - 2x - 3 \right)\]
\[ = 15 x^3 - 6 x^2 - 9x - \left[ 10 x^2 - 4x - 6 \right]\]
\[ = 15 x^3 - 6 x^2 - 9x - 10 x^2 + 4x + 6\]
\[= 15 x^3 - 6 x^2 - 10 x^2 - 9x + 4x + 6\] (Rearranging)
\[= 15 x^3 - 16 x^2 - 5x + 6\] (Combining like terms)
Thus, the answer is \[15 x^3 - 16 x^2 - 5x + 6\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
−3a2 × 4b4
Find each of the following product:
\[\frac{1}{4}xy \times \frac{2}{3} x^2 y z^2\]
Find each of the following product:
\[\left( - \frac{7}{5}x y^2 z \right) \times \left( \frac{13}{3} x^2 y z^2 \right)\]
Write down the product of −8x2y6 and −20xy. Verify the product for x = 2.5, y = 1.
Find the following product:
−11y2(3y + 7)
Find the following product: \[- \frac{8}{27}xyz\left( \frac{3}{2}xy z^2 - \frac{9}{4}x y^2 z^3 \right)\]
Find the following product and verify the result for x = − 1, y = − 2:
(3x − 5y) (x + y)
Simplify:
(x3 − 2x2 + 3x − 4) (x −1) − (2x − 3)(x2 − x + 1)
Simplify : (x − y)(x + y) (x2 + y2)(x4 + y2)
Simplify : (2x − 1)(2x + 1)(4x2 + 1)(16x4 + 1)