Advertisements
Advertisements
प्रश्न
Find each of the following product:
\[\left( - \frac{7}{5}x y^2 z \right) \times \left( \frac{13}{3} x^2 y z^2 \right)\]
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( - \frac{7}{5}x y^2 z \right) \times \left( \frac{13}{3} x^2 y z^2 \right)\]
\[ = \left( - \frac{7}{5} \times \frac{13}{3} \right) \times \left( x \times x^2 \right) \times \left( y^2 \times y \right) \times \left( z \times z^2 \right)\]
\[ = \left( - \frac{7}{5} \times \frac{13}{3} \right) \times \left( x^{1 + 2} \right) \times \left( y^{2 + 1} \right) \times \left( z^{1 + 2} \right)\]
\[ = - \frac{91}{15} x^3 y^3 x^3\]
Thus, the answer is \[- \frac{91}{15} x^3 y^3 x^3\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\left( 0 . 5x \right) \times \left( \frac{1}{3}x y^2 z^4 \right) \times \left( 24 x^2 yz \right)\]
Evaluate each of the following when x = 2, y = −1.
\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
Find the following product:
2a3(3a + 5b)
Find the product 24x2 (1 − 2x) and evaluate its value for x = 3.
Simplify: x2(x2 + 1) − x3(x + 1) − x(x3 − x)
Multiply:
(x2 + y2) by (3a + 2b)
Multiply:
(3x2y − 5xy2) by \[\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\].
Show that: (4pq + 3q)2 − (4pq − 3q)2 = 48pq2
Multiply:
16xy × 18xy
Multiply:
(12a + 17b) × 4c