Advertisements
Advertisements
Question
Find each of the following product:
\[\left( - \frac{7}{5}x y^2 z \right) \times \left( \frac{13}{3} x^2 y z^2 \right)\]
Solution
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( - \frac{7}{5}x y^2 z \right) \times \left( \frac{13}{3} x^2 y z^2 \right)\]
\[ = \left( - \frac{7}{5} \times \frac{13}{3} \right) \times \left( x \times x^2 \right) \times \left( y^2 \times y \right) \times \left( z \times z^2 \right)\]
\[ = \left( - \frac{7}{5} \times \frac{13}{3} \right) \times \left( x^{1 + 2} \right) \times \left( y^{2 + 1} \right) \times \left( z^{1 + 2} \right)\]
\[ = - \frac{91}{15} x^3 y^3 x^3\]
Thus, the answer is \[- \frac{91}{15} x^3 y^3 x^3\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product: \[\left( \frac{4}{3}p q^2 \right) \times \left( - \frac{1}{4} p^2 r \right) \times \left( 16 p^2 q^2 r^2 \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(4x2) × (−3x) × \[\left( \frac{4}{5} x^3 \right)\]
Multiply \[- \frac{3}{2} x^2 y^3 by (2x - y)\] and verify the answer for x = 1 and y = 2.
Multiply:
(a − 1) by (0.1a2 + 3)
Multiply: \[\left( - \frac{a}{7} + \frac{a^2}{9} \right)by\left( \frac{b}{2} - \frac{b^2}{3} \right)\].
Multiply:
(3x2y − 5xy2) by \[\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\].
Simplify:
x2(x − y) y2(x + 2y)
Simplify:
(x3 − 2x2 + 3x − 4) (x −1) − (2x − 3)(x2 − x + 1)
Multiply:
(12a + 17b) × 4c
Solve the following equation.
5(x + 1) = 74