Advertisements
Advertisements
Question
Multiply:
(3x2y − 5xy2) by \[\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\].
Solution
To multiply, we will use distributive law as follows:
\[\left( 3 x^2 y - 5x y^2 \right)\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\]
\[ = \frac{1}{5} x^2 \left( 3 x^2 y - 5x y^2 \right) + \frac{1}{3} y^2 \left( 3 x^2 y - 5x y^2 \right)\]
\[ = \frac{3}{5} x^4 y - x^3 y^2 + x^2 y^3 - \frac{5}{3}x y^4\]
Thus, the answer is \[\frac{3}{5} x^4 y - x^3 y^2 + x^2 y^3 - \frac{5}{3}x y^4\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
(−5xy) × (−3x2yz)
Find each of the following product:
(−5a) × (−10a2) × (−2a3)
Find each of the following product:
(2.3xy) × (0.1x) × (0.16)
Express each of the following product as a monomials and verify the result in each case for x = 1:
(x2)3 × (2x) × (−4x) × (5)
Evaluate (−8x2y6) × (−20xy) for x = 2.5 and y = 1.
Evaluate each of the following when x = 2, y = −1.
\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
Find the following product and verify the result for x = − 1, y = − 2:
(x2y − 1) (3 − 2x2y)
Simplify:
(5 − x)(6 − 5x)( 2 − x)
Simplify:
(3x − 2)(2x − 3) + (5x − 3)(x + 1)
Show that: (a − b)(a + b) + (b − c)(b + c) + (c − a)( c + a) = 0