Advertisements
Advertisements
Question
Evaluate (−8x2y6) × (−20xy) for x = 2.5 and y = 1.
Solution
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n}\]
We have:
\[\left( - 8 x^2 y^6 \right) \times \left( - 20xy \right)\]
\[ = \left\{ \left( - 8 \right) \times \left( - 20 \right) \right\} \times \left( x^2 \times x \right) \times \left( y^6 \times y \right)\]
\[ = \left\{ \left( - 8 \right) \times \left( - 20 \right) \right\} \times \left( x^{2 + 1} \right) \times \left( y^{6 + 1} \right)\]
\[ = 160 x^3 y^7\]
\[\therefore\] \[\left( - 8 x^2 y^6 \right) \times \left( - 20xy \right) = 160 x^3 y^7\]
Substituting x = 2.5 and y = 1 in the result, we get:
\[160 x^3 y^7 \]
\[ = 160 \left( 2 . 5 \right)^3 \left( 1 \right)^7 \]
\[ = 160 \times 15 . 625\]
\[ = 2500\]
Thus, the answer is \[2500\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
\[\left( - \frac{7}{5}x y^2 z \right) \times \left( \frac{13}{3} x^2 y z^2 \right)\]
Evaluate each of the following when x = 2, y = −1.
\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
Evaluate each of the following when x = 2, y = −1.
\[\left( \frac{3}{5} x^2 y \right) \times \left( - \frac{15}{4}x y^2 \right) \times \left( \frac{7}{9} x^2 y^2 \right)\]
Find the following product: \[\left( - \frac{7}{4}a b^2 c - \frac{6}{25} a^2 c^2 \right)( - 50 a^2 b^2 c^2 )\]
Find the following product:
1.5x(10x2y − 100xy2)
Find the product 24x2 (1 − 2x) and evaluate its value for x = 3.
Simplify: x(x + 4) + 3x(2x2 − 1) + 4x2 + 4
Multiply:
(2x + 8) by (x − 3)
Find the following product and verify the result for x = − 1, y = − 2: \[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
Simplify:
(x3 − 2x2 + 3x − 4) (x −1) − (2x − 3)(x2 − x + 1)