Advertisements
Advertisements
Question
Find the product 24x2 (1 − 2x) and evaluate its value for x = 3.
Solution
To find the product, we will use distributive law as follows:
\[24 x^2 \left( 1 - 2x \right)\]
\[ = 24 x^2 \times 1 - 24 x^2 \times 2x\]
\[ = 24 x^2 - 48 x^{1 + 2} \]
\[ = 24 x^2 - 48 x^3\]
Substituting x = 3 in the result, we get:
\[24 x^2 - 48 x^3 \]
\[ = 24 \left( 3 \right)^2 - 48 \left( 3 \right)^3 \]
\[ = 24 \times 9 - 48 \times 27\]
\[ = 216 - 1296\]
\[ = - 1080\]
Thus, the product is \[(24 x^2 - 48 x^3 )\text {P and its value for x = 3 is } ( - 1080)\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
\[\left( - \frac{7}{5}x y^2 z \right) \times \left( \frac{13}{3} x^2 y z^2 \right)\]
Find each of the following product:
(2.3xy) × (0.1x) × (0.16)
Evaluate (3.2x6y3) × (2.1x2y2) when x = 1 and y = 0.5.
Find the following product:
−11a(3a + 2b)
Simplify: x2(x2 + 1) − x3(x + 1) − x(x3 − x)
Simplify: 2a2 + 3a(1 − 2a3) + a(a + 1)
Simplify: a2b(a − b2) + ab2(4ab − 2a2) − a3b(1 − 2b)
Simplify:
(3x + 2y)(4x + 3y) − (2x − y)(7x − 3y)
Simplify : (2.5p − 1.5q)2 − (1.5p − 2.5q)2
Show that: (3x + 7)2 − 84x = (3x − 7)2