Advertisements
Advertisements
प्रश्न
Find the product 24x2 (1 − 2x) and evaluate its value for x = 3.
उत्तर
To find the product, we will use distributive law as follows:
\[24 x^2 \left( 1 - 2x \right)\]
\[ = 24 x^2 \times 1 - 24 x^2 \times 2x\]
\[ = 24 x^2 - 48 x^{1 + 2} \]
\[ = 24 x^2 - 48 x^3\]
Substituting x = 3 in the result, we get:
\[24 x^2 - 48 x^3 \]
\[ = 24 \left( 3 \right)^2 - 48 \left( 3 \right)^3 \]
\[ = 24 \times 9 - 48 \times 27\]
\[ = 216 - 1296\]
\[ = - 1080\]
Thus, the product is \[(24 x^2 - 48 x^3 )\text {P and its value for x = 3 is } ( - 1080)\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[\left( \frac{4}{3} u^2 vw \right) \times \left( - 5uv w^2 \right) \times \left( \frac{1}{3} v^2 wu \right)\]
Find each of the following product:
(2.3xy) × (0.1x) × (0.16)
Express each of the following product as a monomials and verify the result in each case for x = 1:
(4x2) × (−3x) × \[\left( \frac{4}{5} x^3 \right)\]
Evaluate (3.2x6y3) × (2.1x2y2) when x = 1 and y = 0.5.
Evaluate (2.3a5b2) × (1.2a2b2) when a = 1 and b = 0.5.
Simplify: a(b − c) + b(c − a) + c(a − b)
Multiply:
(2x + 8) by (x − 3)
Find the following product and verify the result for x = − 1, y = − 2: \[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
Simplify:
a2b2(a + 2b)(3a + b)
Solve the following equation.
2(x − 4) = 4x + 2