Advertisements
Advertisements
प्रश्न
Find the product −3y(xy + y2) and find its value for x = 4 and y = 5.
उत्तर
To find the product, we will use distributive law as follows:
\[- 3y\left( xy + y^2 \right)\]
\[ = - 3y \times xy + \left( - 3y \right) \times y^2 \]
\[ = - 3x y^{1 + 1} - 3 y^{1 + 2} \]
\[ = - 3x y^2 - 3 y^3\]
Substituting x = 4 and y = 5 in the result, we get:
\[- 3x y^2 - 3 y^3 \]
\[ = - 3\left( 4 \right) \left( 5 \right)^2 - 3 \left( 5 \right)^3 \]
\[ = - 3\left( 4 \right)\left( 25 \right) - 3\left( 125 \right)\]
\[ = - 300 - 375\]
\[ = - 675\]
Thus, the product is ( \[- 3x y^2 - 3 y^3\]), and its value for x = 4 and y = 5 is ( \[-\] 675).
APPEARS IN
संबंधित प्रश्न
Find the following product:
−5a(7a − 2b)
Find the following product:
−11y2(3y + 7)
Multiply:
(x2 + y2) by (3a + 2b)
Multiply:
(2x2y2 − 5xy2) by (x2 − y2)
Multiply:
(3x2y − 5xy2) by \[\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\].
Find the following product and verify the result for x = − 1, y = − 2:
(x2y − 1) (3 − 2x2y)
Simplify:
a2b2(a + 2b)(3a + b)
Simplify:
(2x2 + 3x − 5)(3x2 − 5x + 4)
Simplify : (x − y)(x + y) (x2 + y2)(x4 + y2)
Multiply:
(12a + 17b) × 4c