Advertisements
Advertisements
प्रश्न
Find the following product and verify the result for x = − 1, y = − 2:
(x2y − 1) (3 − 2x2y)
उत्तर
To multiply, we will use distributive law as follows:
\[\left( x^2 y - 1 \right)\left( 3 - 2 x^2 y \right)\]
\[ = x^2 y\left( 3 - 2 x^2 y \right) - 1 \times \left( 3 - 2 x^2 y \right)\]
\[ = 3 x^2 y - 2 x^4 y^2 - 3 + 2 x^2 y\]
\[ = 5 x^2 y - 2 x^4 y^2 - 3\]
\[\therefore\] \[\left( x^2 y - 1 \right)\left( 3 - 2 x^2 y \right) = 5 x^2 y - 2 x^4 y^2 - 3\]
Now, we put x = \[-\] 1 and y = \[-\] 2 on both sides to verify the result.
\[\text { LHS } =\left( x^2 y - 1 \right)\left( 3 - 2 x^2 y \right)\]
\[ = \left[ \left( - 1 \right)^2 \left( - 2 \right) - 1 \right]\left[ 3 - 2 \left( - 1 \right)^2 \left( - 2 \right) \right]\]
\[ = \left[ 1 \times \left( - 2 \right) - 1 \right]\left[ 3 - 2 \times 1 \times \left( - 2 \right) \right]\]
\[ = \left( - 2 - 1 \right)\left( 3 + 4 \right)\]
\[ = - 3 \times 7\]
\[ = - 21\]
\[\text { RHS } = 5 x^2 y - 2 x^4 y^2 - 3\]
\[ = 5 \left( - 1 \right)^2 \left( - 2 \right) - 2 \left( - 1 \right)^4 \left( - 2 \right)^2 - 3\]
\[ = \left[ 5 \times 1 \times \left( - 2 \right) \right] - \left[ 2 \times 1 \times 4 \right] - 3\]
\[ = - 10 - 8 - 3\]
\[ = - 21\]
Because LHS is equal to RHS, the result is verified.
Thus, the answer is \[5 x^2 y - 2 x^4 y^2 - 3\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
5x2 × 4x3
Find each of the following product:
\[\left( - \frac{7}{5}x y^2 z \right) \times \left( \frac{13}{3} x^2 y z^2 \right)\]
Find each of the following product: \[\left( \frac{- 24}{25} x^3 z \right) \times \left( - \frac{15}{16}x z^2 y \right)\]
Evaluate each of the following when x = 2, y = −1.
\[\left( \frac{3}{5} x^2 y \right) \times \left( - \frac{15}{4}x y^2 \right) \times \left( \frac{7}{9} x^2 y^2 \right)\]
Find the following product:
−11a(3a + 2b)
Simplify: a(b − c) − b(c − a) − c(a − b)
Multiply:
(2x2y2 − 5xy2) by (x2 − y2)
Simplify:
(5x − 3)(x + 2) − (2x + 5)(4x − 3)
Show that: (4pq + 3q)2 − (4pq − 3q)2 = 48pq2
Multiply:
16xy × 18xy