Advertisements
Advertisements
Question
Find the following product and verify the result for x = − 1, y = − 2:
(x2y − 1) (3 − 2x2y)
Solution
To multiply, we will use distributive law as follows:
\[\left( x^2 y - 1 \right)\left( 3 - 2 x^2 y \right)\]
\[ = x^2 y\left( 3 - 2 x^2 y \right) - 1 \times \left( 3 - 2 x^2 y \right)\]
\[ = 3 x^2 y - 2 x^4 y^2 - 3 + 2 x^2 y\]
\[ = 5 x^2 y - 2 x^4 y^2 - 3\]
\[\therefore\] \[\left( x^2 y - 1 \right)\left( 3 - 2 x^2 y \right) = 5 x^2 y - 2 x^4 y^2 - 3\]
Now, we put x = \[-\] 1 and y = \[-\] 2 on both sides to verify the result.
\[\text { LHS } =\left( x^2 y - 1 \right)\left( 3 - 2 x^2 y \right)\]
\[ = \left[ \left( - 1 \right)^2 \left( - 2 \right) - 1 \right]\left[ 3 - 2 \left( - 1 \right)^2 \left( - 2 \right) \right]\]
\[ = \left[ 1 \times \left( - 2 \right) - 1 \right]\left[ 3 - 2 \times 1 \times \left( - 2 \right) \right]\]
\[ = \left( - 2 - 1 \right)\left( 3 + 4 \right)\]
\[ = - 3 \times 7\]
\[ = - 21\]
\[\text { RHS } = 5 x^2 y - 2 x^4 y^2 - 3\]
\[ = 5 \left( - 1 \right)^2 \left( - 2 \right) - 2 \left( - 1 \right)^4 \left( - 2 \right)^2 - 3\]
\[ = \left[ 5 \times 1 \times \left( - 2 \right) \right] - \left[ 2 \times 1 \times 4 \right] - 3\]
\[ = - 10 - 8 - 3\]
\[ = - 21\]
Because LHS is equal to RHS, the result is verified.
Thus, the answer is \[5 x^2 y - 2 x^4 y^2 - 3\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
(7ab) × (−5ab2c) × (6abc2)
Find each of the following product:
\[\left( - \frac{2}{7} a^4 \right) \times \left( - \frac{3}{4} a^2 b \right) \times \left( - \frac{14}{5} b^2 \right)\]
Find each of the following product: \[\left( \frac{4}{3} u^2 vw \right) \times \left( - 5uv w^2 \right) \times \left( \frac{1}{3} v^2 wu \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(4x2) × (−3x) × \[\left( \frac{4}{5} x^3 \right)\]
Find the following product:
−5a(7a − 2b)
Find the following product:
−11y2(3y + 7)
Find the following product: \[- \frac{4}{27}xyz\left( \frac{9}{2} x^2 yz - \frac{3}{4}xy z^2 \right)\]
Multiply:
(a − 1) by (0.1a2 + 3)
Simplify:
a2b2(a + 2b)(3a + b)
Simplify:
(5x − 3)(x + 2) − (2x + 5)(4x − 3)