Advertisements
Advertisements
Question
Find the following product: \[- \frac{4}{27}xyz\left( \frac{9}{2} x^2 yz - \frac{3}{4}xy z^2 \right)\]
Solution
To find the product, we will use distributive law as follows:
\[- \frac{4}{27}xyz\left( \frac{9}{2} x^2 yz - \frac{3}{4}xy z^2 \right)\]
\[ = \left\{ \left( - \frac{4}{27}xyz \right)\left( \frac{9}{2} x^2 yz \right) \right\} - \left\{ \left( - \frac{4}{27}xyz \right)\left( \frac{3}{4}xy z^2 \right) \right\}\]
\[ = \left\{ \left( - \frac{4}{27} \times \frac{9}{2} \right)\left( x^{1 + 2} y^{1 + 1} z^{1 + 1} \right) \right\} - \left\{ \left( - \frac{4}{27} \times \frac{3}{4} \right)\left( x^{1 + 1} y^{1 + 1} z^{1 + 2} \right) \right\}\]
\[ = \left\{ \left( - \frac{4^2}{{27}_3} \times \frac{9}{2} \right)\left( x^{1 + 2} y^{1 + 1} z^{1 + 1} \right) \right\} - \left\{ \left( - \frac{4^1}{{27}_9} \times \frac{3}{4} \right)\left( x^{1 + 1} y^{1 + 1} z^{1 + 2} \right) \right\}\]
\[ = - \frac{2}{3} x^3 y^2 z^2 + \frac{1}{9} x^2 y^2 z^3\]
Thus, the answer is \[- \frac{2}{3} x^3 y^2 z^2 + \frac{1}{9} x^2 y^2 z^3\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
5x2 × 4x3
Find each of the following product:
\[\left( - \frac{2}{7} a^4 \right) \times \left( - \frac{3}{4} a^2 b \right) \times \left( - \frac{14}{5} b^2 \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(3x) × (4x) × (−5x)
Find the following product: \[\frac{4}{3}a( a^2 + b^2 - 3 c^2 )\]
(2xy + 3y2) (3y2 − 2)
Find the following product and verify the result for x = − 1, y = − 2:
(x2y − 1) (3 − 2x2y)
Find the following product and verify the result for x = − 1, y = − 2: \[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
Simplify : (2.5p − 1.5q)2 − (1.5p − 2.5q)2
Solve the following equation.
6x − 1 = 3x + 8
Solve the following equation.
5(x + 1) = 74