Advertisements
Advertisements
प्रश्न
Find the following product: \[- \frac{4}{27}xyz\left( \frac{9}{2} x^2 yz - \frac{3}{4}xy z^2 \right)\]
उत्तर
To find the product, we will use distributive law as follows:
\[- \frac{4}{27}xyz\left( \frac{9}{2} x^2 yz - \frac{3}{4}xy z^2 \right)\]
\[ = \left\{ \left( - \frac{4}{27}xyz \right)\left( \frac{9}{2} x^2 yz \right) \right\} - \left\{ \left( - \frac{4}{27}xyz \right)\left( \frac{3}{4}xy z^2 \right) \right\}\]
\[ = \left\{ \left( - \frac{4}{27} \times \frac{9}{2} \right)\left( x^{1 + 2} y^{1 + 1} z^{1 + 1} \right) \right\} - \left\{ \left( - \frac{4}{27} \times \frac{3}{4} \right)\left( x^{1 + 1} y^{1 + 1} z^{1 + 2} \right) \right\}\]
\[ = \left\{ \left( - \frac{4^2}{{27}_3} \times \frac{9}{2} \right)\left( x^{1 + 2} y^{1 + 1} z^{1 + 1} \right) \right\} - \left\{ \left( - \frac{4^1}{{27}_9} \times \frac{3}{4} \right)\left( x^{1 + 1} y^{1 + 1} z^{1 + 2} \right) \right\}\]
\[ = - \frac{2}{3} x^3 y^2 z^2 + \frac{1}{9} x^2 y^2 z^3\]
Thus, the answer is \[- \frac{2}{3} x^3 y^2 z^2 + \frac{1}{9} x^2 y^2 z^3\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\left( 0 . 5x \right) \times \left( \frac{1}{3}x y^2 z^4 \right) \times \left( 24 x^2 yz \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(4x2) × (−3x) × \[\left( \frac{4}{5} x^3 \right)\]
xy(x3 − y3)
Find the following product: \[- \frac{8}{27}xyz\left( \frac{3}{2}xy z^2 - \frac{9}{4}x y^2 z^3 \right)\]
Find the following product:
250.5xy \[\left( xz + \frac{y}{10} \right)\]
Find the following product: \[\frac{7}{5} x^2 y\left( \frac{3}{5}x y^2 + \frac{2}{5}x \right)\]
Simplify: a(b − c) + b(c − a) + c(a − b)
Simplify: 2a2 + 3a(1 − 2a3) + a(a + 1)
Simplify:
x2(x − y) y2(x + 2y)
Simplify:
(3x − 2)(2x − 3) + (5x − 3)(x + 1)