Advertisements
Advertisements
प्रश्न
Simplify:
x2(x − y) y2(x + 2y)
उत्तर
To simplify, we will proceed as follows:
\[x^2 \left( x - y \right) y^2 \left( x + 2y \right)\]
\[ = \left[ x^2 \left( x - y \right) \right]\left[ y^2 \left( x + 2y \right) \right]\]
\[ = \left( x^3 - x^2 y \right)\left( x y^2 + 2 y^3 \right)\]
\[ = x^3 \left( x y^2 + 2 y^3 \right) - x^2 y\left( x y^2 + 2 y^3 \right)\]
\[ = x^4 y^2 + 2 x^3 y^3 - \left[ x^3 y^3 + 2 x^2 y^4 \right]\]
\[ = x^4 y^2 + 2 x^3 y^3 - x^3 y^3 - 2 x^2 y^4 \]
\[ = x^4 y^2 + x^3 y^3 - 2 x^2 y^4\]
Thus, the answer is \[x^4 y^2 + x^3 y^3 - 2 x^2 y^4\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[\left( \frac{7}{9}a b^2 \right) \times \left( \frac{15}{7}a c^2 b \right) \times \left( - \frac{3}{5} a^2 c \right)\]
Find the following product: \[\left( - \frac{7}{4}a b^2 c - \frac{6}{25} a^2 c^2 \right)( - 50 a^2 b^2 c^2 )\]
Find the following product: \[- \frac{4}{27}xyz\left( \frac{9}{2} x^2 yz - \frac{3}{4}xy z^2 \right)\]
Find the product −3y(xy + y2) and find its value for x = 4 and y = 5.
Simplify: a(b − c) + b(c − a) + c(a − b)
Multiply:
[−3d + (−7f)] by (5d + f)
Multiply:
(2x2 − 1) by (4x3 + 5x2)
Simplify:
x2(x + 2y) (x − 3y)
Simplify : (m2 − n2m)2 + 2m3n2
Solve the following equation.
6x − 1 = 3x + 8