Advertisements
Advertisements
प्रश्न
Simplify:
x2(x − y) y2(x + 2y)
उत्तर
To simplify, we will proceed as follows:
\[x^2 \left( x - y \right) y^2 \left( x + 2y \right)\]
\[ = \left[ x^2 \left( x - y \right) \right]\left[ y^2 \left( x + 2y \right) \right]\]
\[ = \left( x^3 - x^2 y \right)\left( x y^2 + 2 y^3 \right)\]
\[ = x^3 \left( x y^2 + 2 y^3 \right) - x^2 y\left( x y^2 + 2 y^3 \right)\]
\[ = x^4 y^2 + 2 x^3 y^3 - \left[ x^3 y^3 + 2 x^2 y^4 \right]\]
\[ = x^4 y^2 + 2 x^3 y^3 - x^3 y^3 - 2 x^2 y^4 \]
\[ = x^4 y^2 + x^3 y^3 - 2 x^2 y^4\]
Thus, the answer is \[x^4 y^2 + x^3 y^3 - 2 x^2 y^4\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
(−5a) × (−10a2) × (−2a3)
Find each of the following product:
\[\left( 0 . 5x \right) \times \left( \frac{1}{3}x y^2 z^4 \right) \times \left( 24 x^2 yz \right)\]
Find the following product: \[- \frac{4}{27}xyz\left( \frac{9}{2} x^2 yz - \frac{3}{4}xy z^2 \right)\]
Multiply \[- \frac{3}{2} x^2 y^3 by (2x - y)\] and verify the answer for x = 1 and y = 2.
Multiply:
(3x2 + y2) by (2x2 + 3y2)
Multiply: \[\left( \frac{3}{5}x + \frac{1}{2}y \right) by \left( \frac{5}{6}x + 4y \right)\]
Multiply:
(2x2y2 − 5xy2) by (x2 − y2)
Multiply: \[\left( - \frac{a}{7} + \frac{a^2}{9} \right)by\left( \frac{b}{2} - \frac{b^2}{3} \right)\].
Find the following product and verify the result for x = − 1, y = − 2:
(x2y − 1) (3 − 2x2y)
Simplify:
x2(x + 2y) (x − 3y)