Advertisements
Advertisements
प्रश्न
Find the following product: \[- \frac{4}{27}xyz\left( \frac{9}{2} x^2 yz - \frac{3}{4}xy z^2 \right)\]
उत्तर
To find the product, we will use distributive law as follows:
\[- \frac{4}{27}xyz\left( \frac{9}{2} x^2 yz - \frac{3}{4}xy z^2 \right)\]
\[ = \left\{ \left( - \frac{4}{27}xyz \right)\left( \frac{9}{2} x^2 yz \right) \right\} - \left\{ \left( - \frac{4}{27}xyz \right)\left( \frac{3}{4}xy z^2 \right) \right\}\]
\[ = \left\{ \left( - \frac{4}{27} \times \frac{9}{2} \right)\left( x^{1 + 2} y^{1 + 1} z^{1 + 1} \right) \right\} - \left\{ \left( - \frac{4}{27} \times \frac{3}{4} \right)\left( x^{1 + 1} y^{1 + 1} z^{1 + 2} \right) \right\}\]
\[ = \left\{ \left( - \frac{4^2}{{27}_3} \times \frac{9}{2} \right)\left( x^{1 + 2} y^{1 + 1} z^{1 + 1} \right) \right\} - \left\{ \left( - \frac{4^1}{{27}_9} \times \frac{3}{4} \right)\left( x^{1 + 1} y^{1 + 1} z^{1 + 2} \right) \right\}\]
\[ = - \frac{2}{3} x^3 y^2 z^2 + \frac{1}{9} x^2 y^2 z^3\]
Thus, the answer is \[- \frac{2}{3} x^3 y^2 z^2 + \frac{1}{9} x^2 y^2 z^3\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\left( - \frac{1}{27} a^2 b^2 \right) \times \left( \frac{9}{2} a^3 b^2 c^2 \right)\]
Find each of the following product: \[\left( \frac{7}{9}a b^2 \right) \times \left( \frac{15}{7}a c^2 b \right) \times \left( - \frac{3}{5} a^2 c \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(4x2) × (−3x) × \[\left( \frac{4}{5} x^3 \right)\]
Find the value of (5x6) × (−1.5x2y3) × (−12xy2) when x = 1, y = 0.5.
Find the following product:
250.5xy \[\left( xz + \frac{y}{10} \right)\]
Find the product 24x2 (1 − 2x) and evaluate its value for x = 3.
Multiply \[- \frac{3}{2} x^2 y^3 by (2x - y)\] and verify the answer for x = 1 and y = 2.
Multiply:
(x2 + y2) by (3a + 2b)
Multiply:
[−3d + (−7f)] by (5d + f)
Show that: (a − b)(a + b) + (b − c)(b + c) + (c − a)( c + a) = 0