Advertisements
Advertisements
प्रश्न
Find the value of (5x6) × (−1.5x2y3) × (−12xy2) when x = 1, y = 0.5.
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( 5 x^6 \right) \times \left( - 1 . 5 x^2 y^3 \right) \times \left( - 12x y^2 \right)\]
\[ = \left\{ 5 \times \left( - 1 . 5 \right) \times \left( - 12 \right) \right\} \times \left( x^6 \times x^2 \times x \right) \times \left( y^3 \times y^2 \right)\]
\[ = \left\{ 5 \times \left( - 1 . 5 \right) \times \left( - 12 \right) \right\} \times \left( x^{6 + 2 + 1} \right) \times \left( y^{3 + 2} \right)\]
\[ = 90 x^9 y^5 \]
\[\therefore\] \[\left( 5 x^6 \right) \times \left( - 1 . 5 x^2 y^3 \right) \times \left( - 12x y^2 \right) = 90 x^9 y^5\]
Substituting x = 1 and y = 0.5 in the result, we get:
\[90 x^9 y^5 \]
\[ = 90 \left( 1 \right)^9 \left( 0 . 5 \right)^5 \]
\[ = 90 \times 1 \times 0 . 03125\]
\[ = 2 . 8125\]
Thus, the answer is 2.8125.
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[\left( \frac{4}{3} u^2 vw \right) \times \left( - 5uv w^2 \right) \times \left( \frac{1}{3} v^2 wu \right)\]
Find each of the following product:
\[\left( 0 . 5x \right) \times \left( \frac{1}{3}x y^2 z^4 \right) \times \left( 24 x^2 yz \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(4x2) × (−3x) × \[\left( \frac{4}{5} x^3 \right)\]
Find the following product:
−5a(7a − 2b)
Simplify: 3a2 + 2(a + 2) − 3a(2a + 1)
Simplify: x(x + 4) + 3x(2x2 − 1) + 4x2 + 4
Simplify: a(b − c) − b(c − a) − c(a − b)
Simplify: a2(2a − 1) + 3a + a3 − 8
Multiply: \[\left( \frac{3}{5}x + \frac{1}{2}y \right) by \left( \frac{5}{6}x + 4y \right)\]
Solve the following equation.
2(x − 4) = 4x + 2