Advertisements
Advertisements
प्रश्न
Simplify: a2(2a − 1) + 3a + a3 − 8
उत्तर
To simplify, we will use distributive law as follows:
\[a^2 \left( 2a - 1 \right) + 3a + a^3 - 8\]
\[ = 2 a^3 - a^2 + 3a + a^3 - 8\]
\[ = 2 a^3 + a^3 - a^2 + 3a - 8\]
\[ = 3 a^3 - a^2 + 3a - 8\]
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
5x2 × 4x3
Find each of the following product: \[( - 7xy) \times \left( \frac{1}{4} x^2 yz \right)\]
Find each of the following product:
\[\left( - \frac{2}{7} a^4 \right) \times \left( - \frac{3}{4} a^2 b \right) \times \left( - \frac{14}{5} b^2 \right)\]
Multiply \[- \frac{3}{2} x^2 y^3 by (2x - y)\] and verify the answer for x = 1 and y = 2.
Simplify: 2a2 + 3a(1 − 2a3) + a(a + 1)
Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]
Multiply:
(a − 1) by (0.1a2 + 3)
Simplify:
(5x − 3)(x + 2) − (2x + 5)(4x − 3)
Show that: (9a − 5b)2 + 180ab = (9a + 5b)2
Multiply:
23xy2 × 4yz2