Advertisements
Advertisements
प्रश्न
Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]
उत्तर
To simplify, we will use distributive law as follows:
\[\frac{3}{2} x^2 \left( x^2 - 1 \right) + \frac{1}{4} x^2 \left( x^2 + x \right) - \frac{3}{4}x\left( x^3 - 1 \right)\]
\[ = \frac{3}{2} x^4 - \frac{3}{2} x^2 + \frac{1}{4} x^4 + \frac{1}{4} x^3 - \frac{3}{4} x^4 + \frac{3}{4}x\]
\[ = \frac{3}{2} x^4 + \frac{1}{4} x^4 - \frac{3}{4} x^4 + \frac{1}{4} x^3 - \frac{3}{2} x^2 + \frac{3}{4}x\]
\[ = \left( \frac{6 + 1 - 3}{4} \right) x^4 + \frac{1}{4} x^3 - \frac{3}{2} x^2 + \frac{3}{4}x\]
\[ = x^4 + \frac{1}{4} x^3 - \frac{3}{2} x^2 + \frac{3}{4}x\]
APPEARS IN
संबंधित प्रश्न
xy(x3 − y3)
Find the following product:
4.1xy(1.1x − y)
Find the following product:
250.5xy \[\left( xz + \frac{y}{10} \right)\]
Multiply \[- \frac{3}{2} x^2 y^3 by (2x - y)\] and verify the answer for x = 1 and y = 2.
Simplify: x3y(x2 − 2x) + 2xy(x3 − x4)
Multiply:
(a − 1) by (0.1a2 + 3)
Multiply: \[\left( - \frac{a}{7} + \frac{a^2}{9} \right)by\left( \frac{b}{2} - \frac{b^2}{3} \right)\].
Multiply:
(2x2 − 1) by (4x3 + 5x2)
Show that: (9a − 5b)2 + 180ab = (9a + 5b)2
Multiply:
(12a + 17b) × 4c