English

Simplify: 3 2 X 2 ( X 2 − 1 ) + 1 4 X 2 ( X 2 + X ) − 3 4 X ( X 3 − 1 ) - Mathematics

Advertisements
Advertisements

Question

Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]

Answer in Brief

Solution

To simplify, we will use distributive law as follows:​

\[\frac{3}{2} x^2 \left( x^2 - 1 \right) + \frac{1}{4} x^2 \left( x^2 + x \right) - \frac{3}{4}x\left( x^3 - 1 \right)\]

\[ = \frac{3}{2} x^4 - \frac{3}{2} x^2 + \frac{1}{4} x^4 + \frac{1}{4} x^3 - \frac{3}{4} x^4 + \frac{3}{4}x\]

\[ = \frac{3}{2} x^4 + \frac{1}{4} x^4 - \frac{3}{4} x^4 + \frac{1}{4} x^3 - \frac{3}{2} x^2 + \frac{3}{4}x\]

\[ = \left( \frac{6 + 1 - 3}{4} \right) x^4 + \frac{1}{4} x^3 - \frac{3}{2} x^2 + \frac{3}{4}x\]

\[ = x^4 + \frac{1}{4} x^3 - \frac{3}{2} x^2 + \frac{3}{4}x\]

shaalaa.com
Multiplication of Algebraic Expressions
  Is there an error in this question or solution?
Chapter 6: Algebraic Expressions and Identities - Exercise 6.4 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 8
Chapter 6 Algebraic Expressions and Identities
Exercise 6.4 | Q 20.11 | Page 21
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×