Advertisements
Advertisements
Question
Multiply:
(0.8a − 0.5b) by (1.5a − 3b)
Solution
To multiply, we will use distributive law as follows:
\[\left( 0 . 8a - 0 . 5b \right)\left( 1 . 5a - 3b \right)\]
\[ = 0 . 8a\left( 1 . 5a - 3b \right) - 0 . 5b\left( 1 . 5a - 3b \right)\]
\[ = 1 . 2 a^2 - 2 . 4ab - 0 . 75ab + 1 . 5 b^2 \]
\[ = 1 . 2 a^2 - 3 . 15ab + 1 . 5 b^2 \]
Thus, the answer is \[1 . 2 a^2 - 3 . 15ab + 1 . 5 b^2\].
APPEARS IN
RELATED QUESTIONS
Find the following product:
−5a(7a − 2b)
Find the following product: \[\frac{6x}{5}( x^3 + y^3 )\]
Find the following product: \[\frac{7}{5} x^2 y\left( \frac{3}{5}x y^2 + \frac{2}{5}x \right)\]
Simplify: x3y(x2 − 2x) + 2xy(x3 − x4)
Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]
Simplify: a2b(a − b2) + ab2(4ab − 2a2) − a3b(1 − 2b)
Multiply:
[−3d + (−7f)] by (5d + f)
Multiply: \[\left( - \frac{a}{7} + \frac{a^2}{9} \right)by\left( \frac{b}{2} - \frac{b^2}{3} \right)\].
Simplify:
x2(x − y) y2(x + 2y)
Simplify:
(x2 − 3x + 2)(5x − 2) − (3x2 + 4x − 5)(2x − 1)