Advertisements
Advertisements
Question
Multiply: \[\left( - \frac{a}{7} + \frac{a^2}{9} \right)by\left( \frac{b}{2} - \frac{b^2}{3} \right)\].
Solution
To multiply, we will use distributive law as follows:
\[\left( - \frac{a}{7} + \frac{a^2}{9} \right)\left( \frac{b}{2} - \frac{b^2}{3} \right)\]
\[ = \left( - \frac{a}{7} \right)\left( \frac{b}{2} - \frac{b^2}{3} \right) + \left( \frac{a^2}{9} \right)\left( \frac{b}{2} - \frac{b^2}{3} \right)\]
\[ = \left( - \frac{ab}{14} + \frac{a b^2}{21} \right) + \left( \frac{a^2 b}{18} - \frac{a^2 b^2}{27} \right)\]
\[ = - \frac{ab}{14} + \frac{a b^2}{21} + \frac{a^2 b}{18} - \frac{a^2 b^2}{27}\]
Thus, the answer is \[- \frac{ab}{14} + \frac{a b^2}{21} + \frac{a^2 b}{18} - \frac{a^2 b^2}{27}\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
\[\frac{1}{4}xy \times \frac{2}{3} x^2 y z^2\]
Find each of the following product:
(−5a) × (−10a2) × (−2a3)
Express each of the following product as a monomials and verify the result in each case for x = 1:
(x2)3 × (2x) × (−4x) × (5)
Write down the product of −8x2y6 and −20xy. Verify the product for x = 2.5, y = 1.
Evaluate (−8x2y6) × (−20xy) for x = 2.5 and y = 1.
Find the following product:
−11y2(3y + 7)
Multiply:
(x6 − y6) by (x2 + y2)
Find the following product and verify the result for x = − 1, y = − 2:
(x2y − 1) (3 − 2x2y)
Simplify:
(5x − 3)(x + 2) − (2x + 5)(4x − 3)
Multiply:
(12a + 17b) × 4c