Advertisements
Advertisements
Question
Write down the product of −8x2y6 and −20xy. Verify the product for x = 2.5, y = 1.
Solution
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n}\]
We have:
\[\left( - 8 x^2 y^6 \right) \times \left( - 20xy \right)\]
\[ = \left\{ \left( - 8 \right) \times \left( - 20 \right) \right\} \times \left( x^2 \times x \right) \times \left( y^6 \times y \right)\]
\[ = \left\{ \left( - 8 \right) \times \left( - 20 \right) \right\} \times \left( x^{2 + 1} \right) \times \left( y^{6 + 1} \right)\]
\[ = - 160 x^3 y^7 \]
\[\therefore\] \[\left( - 8 x^2 y^6 \right) \times \left( - 20xy \right) = - 160 x^3 y^7\]
Substituting x = 2.5 and y = 1 in LHS, we get:
\[\text { LHS } = \left( - 8 x^2 y^6 \right) \times \left( - 20xy \right)\]
\[ = \left\{ - 8 \left( 2 . 5 \right)^2 \left( 1 \right)^6 \right\} \times \left\{ - 20\left( 2 . 5 \right)\left( 1 \right) \right\}\]
\[ = \left\{ - 8\left( 6 . 25 \right)\left( 1 \right) \right\} \times \left\{ - 20\left( 2 . 5 \right)\left( 1 \right) \right\}\]
\[ = \left( - 50 \right) \times \left( - 50 \right)\]
\[ = 2500\]
Substituting x = 2.5 and y = 1 in RHS, we get:
\[\text { RHS } = - 160 x^3 y^7 \]
\[ = - 160 \left( 2 . 5 \right)^3 \left( 1 \right)^7 \]
\[ = - 160\left( 15 . 625 \right) \times 1\]
\[ = - 2500\]
Because LHS is equal to RHS, the result is correct.
Thus, the answer is \[- 160 x^3 y^7\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
5x2 × 4x3
Evaluate each of the following when x = 2, y = −1.
\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
xy(x3 − y3)
Find the following product:
250.5xy \[\left( xz + \frac{y}{10} \right)\]
Multiply:
(5x + 3) by (7x + 2)
Multiply:
(2x + 8) by (x − 3)
Simplify:
a2b2(a + 2b)(3a + b)
Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)
Show that: (9a − 5b)2 + 180ab = (9a + 5b)2
Multiply:
16xy × 18xy