Advertisements
Advertisements
Question
Evaluate (3.2x6y3) × (2.1x2y2) when x = 1 and y = 0.5.
Solution
First multiply the expressions and then substitute the values for the variables.
To multiply algebric experssions use the commutative and the associative laws along with the law of indices, \[a^m \times a^n = a^{m + n}\].
We have,
\[\left( 3 . 2 x^6 y^3 \right) \times \left( 2 . 1 x^2 y^2 \right)\]
\[ = \left( 3 . 2 \times 2 . 1 \right) \times \left( x^6 \times x^2 \right) \times \left( y^3 \times y^2 \right)\]
\[ = 6 . 72 x^8 y^5 \]
Hence,
\[\left( 3 . 2 x^6 y^3 \right) \times \left( 2 . 1 x^2 y^2 \right) = 6 . 72 x^8 y^5\]
Now, substitute 1 for x and 0.5 for y in the result.
\[6 . 72 x^8 y^5 \]
\[ = 6 . 72 \left( 1 \right)^8 \left( 0 . 5 \right)^5 \]
\[ = 6 . 72 \times 1 \times 0 . 03125\]
\[ = 0 . 21\]
Hence, the answer is \[0 . 21\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
(−5xy) × (−3x2yz)
Find each of the following product: \[\left( \frac{4}{3} u^2 vw \right) \times \left( - 5uv w^2 \right) \times \left( \frac{1}{3} v^2 wu \right)\]
Find the following product: \[- \frac{8}{27}xyz\left( \frac{3}{2}xy z^2 - \frac{9}{4}x y^2 z^3 \right)\]
Find the following product: \[\frac{7}{5} x^2 y\left( \frac{3}{5}x y^2 + \frac{2}{5}x \right)\]
Simplify: x(x + 4) + 3x(2x2 − 1) + 4x2 + 4
Multiply:
(7x + y) by (x + 5y)
Multiply:
(0.8a − 0.5b) by (1.5a − 3b)
Simplify:
(5x − 3)(x + 2) − (2x + 5)(4x − 3)
Simplify : (4m − 8n)2 + (7m + 8n)2
Show that: (3x + 7)2 − 84x = (3x − 7)2