Advertisements
Advertisements
प्रश्न
Evaluate (3.2x6y3) × (2.1x2y2) when x = 1 and y = 0.5.
उत्तर
First multiply the expressions and then substitute the values for the variables.
To multiply algebric experssions use the commutative and the associative laws along with the law of indices, \[a^m \times a^n = a^{m + n}\].
We have,
\[\left( 3 . 2 x^6 y^3 \right) \times \left( 2 . 1 x^2 y^2 \right)\]
\[ = \left( 3 . 2 \times 2 . 1 \right) \times \left( x^6 \times x^2 \right) \times \left( y^3 \times y^2 \right)\]
\[ = 6 . 72 x^8 y^5 \]
Hence,
\[\left( 3 . 2 x^6 y^3 \right) \times \left( 2 . 1 x^2 y^2 \right) = 6 . 72 x^8 y^5\]
Now, substitute 1 for x and 0.5 for y in the result.
\[6 . 72 x^8 y^5 \]
\[ = 6 . 72 \left( 1 \right)^8 \left( 0 . 5 \right)^5 \]
\[ = 6 . 72 \times 1 \times 0 . 03125\]
\[ = 0 . 21\]
Hence, the answer is \[0 . 21\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\left( - \frac{1}{27} a^2 b^2 \right) \times \left( \frac{9}{2} a^3 b^2 c^2 \right)\]
Find each of the following product: \[\left( \frac{4}{3} u^2 vw \right) \times \left( - 5uv w^2 \right) \times \left( \frac{1}{3} v^2 wu \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(3x) × (4x) × (−5x)
Evaluate (−8x2y6) × (−20xy) for x = 2.5 and y = 1.
Find the following product:
0.1y(0.1x5 + 0.1y)
Find the following product:
1.5x(10x2y − 100xy2)
Simplify:
a2b2(a + 2b)(3a + b)
Multiply:
(4x + 5y) × (9x + 7y)
Solve the following equation.
6x − 1 = 3x + 8
Solve:
(3x + 2y)(7x − 8y)