Advertisements
Advertisements
प्रश्न
Find the following product:
0.1y(0.1x5 + 0.1y)
उत्तर
To find the product, we will use distributive law as follows:
\[0 . 1y\left( 0 . 1 x^5 + 0 . 1y \right)\]
\[ = \left( 0 . 1y \right)\left( 0 . 1 x^5 \right) + \left( 0 . 1y \right)\left( 0 . 1y \right)\]
\[ = \left( 0 . 1 \times 0 . 1 \right)\left( y \times x^5 \right) + \left( 0 . 1 \times 0 . 1 \right)\left( y \times y \right)\]
\[ = \left( 0 . 1 \times 0 . 1 \right)\left( x^5 \times y \right) + \left( 0 . 1 \times 0 . 1 \right)\left( y^{1 + 1} \right)\]
\[ = 0 . 01 x^5 y + 0 . 01 y^2\]
Thus, the answer is \[0 . 01 x^5 y + 0 . 01 y^2\].
APPEARS IN
संबंधित प्रश्न
Evaluate (3.2x6y3) × (2.1x2y2) when x = 1 and y = 0.5.
xy(x3 − y3)
Find the following product: \[- \frac{8}{27}xyz\left( \frac{3}{2}xy z^2 - \frac{9}{4}x y^2 z^3 \right)\]
Find the following product: \[- \frac{4}{27}xyz\left( \frac{9}{2} x^2 yz - \frac{3}{4}xy z^2 \right)\]
Find the following product:
1.5x(10x2y − 100xy2)
Multiply:
(0.8a − 0.5b) by (1.5a − 3b)
Multiply:
(3x2y − 5xy2) by \[\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\].
Find the following product and verify the result for x = − 1, y = − 2:
(3x − 5y) (x + y)
Show that: (a − b)(a + b) + (b − c)(b + c) + (c − a)( c + a) = 0
Multiply:
(4x + 5y) × (9x + 7y)