Advertisements
Advertisements
प्रश्न
Find the following product: \[\left( - \frac{7}{4}a b^2 c - \frac{6}{25} a^2 c^2 \right)( - 50 a^2 b^2 c^2 )\]
उत्तर
To find the product, we will use distributive law as follows:
\[\left( - \frac{7}{4}a b^2 c - \frac{6}{25} a^2 c^2 \right)\left( - 50 a^2 b^2 c^2 \right)\]
\[ = \left\{ \left( - \frac{7}{4}a b^2 c \right)\left( - 50 a^2 b^2 c^2 \right) \right\} - \left\{ \left( \frac{6}{25} a^2 c^2 \right)\left( - 50 a^2 b^2 c^2 \right) \right\}\]
\[ = \left\{ \left\{ - \frac{7}{4} \times \left( - 50 \right) \right\}\left( a \times a^2 \right) \times \left( b^2 \times b^2 \right) \times \left( c \times c^2 \right) \right\} - \left\{ \left( \frac{6}{25} \right)\left( - 50 \right)\left( a^2 \times a^2 \right) \times \left( b^2 \right) \times \left( c^2 \times c^2 \right) \right\}\]
\[ = \left\{ - \frac{7}{4} \times \left( - 50 \right) \right\}\left( a^{1 + 2} b^{2 + 2} c^{1 + 2} \right) - \left\{ \left( \frac{6}{25} \right)\left( - 50 \right)\left( a^{2 + 2} b^2 c^{2 + 2} \right) \right\}\]
\[ = \frac{175}{2} a^3 b^4 c^3 - \left( - 12 a^4 b^2 c^4 \right)\]
\[ = \frac{175}{2} a^3 b^4 c^3 + 12 a^4 b^2 c^4\]
Thus, the answer is \[\frac{175}{2} a^3 b^4 c^3 + 12 a^4 b^2 c^4\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
−3a2 × 4b4
Find each of the following product:
(7ab) × (−5ab2c) × (6abc2)
Find each of the following product:
(−5a) × (−10a2) × (−2a3)
Find each of the following product:
(2.3xy) × (0.1x) × (0.16)
Find the following product:
−11y2(3y + 7)
Find the product −3y(xy + y2) and find its value for x = 4 and y = 5.
Multiply:
(3x2y − 5xy2) by \[\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\].
Simplify:
(5x + 3)(x − 1)(3x − 2)
Simplify:
(5 − x)(6 − 5x)( 2 − x)
Multiply:
23xy2 × 4yz2