Advertisements
Advertisements
प्रश्न
Find the following product: \[\left( - \frac{7}{4}a b^2 c - \frac{6}{25} a^2 c^2 \right)( - 50 a^2 b^2 c^2 )\]
उत्तर
To find the product, we will use distributive law as follows:
\[\left( - \frac{7}{4}a b^2 c - \frac{6}{25} a^2 c^2 \right)\left( - 50 a^2 b^2 c^2 \right)\]
\[ = \left\{ \left( - \frac{7}{4}a b^2 c \right)\left( - 50 a^2 b^2 c^2 \right) \right\} - \left\{ \left( \frac{6}{25} a^2 c^2 \right)\left( - 50 a^2 b^2 c^2 \right) \right\}\]
\[ = \left\{ \left\{ - \frac{7}{4} \times \left( - 50 \right) \right\}\left( a \times a^2 \right) \times \left( b^2 \times b^2 \right) \times \left( c \times c^2 \right) \right\} - \left\{ \left( \frac{6}{25} \right)\left( - 50 \right)\left( a^2 \times a^2 \right) \times \left( b^2 \right) \times \left( c^2 \times c^2 \right) \right\}\]
\[ = \left\{ - \frac{7}{4} \times \left( - 50 \right) \right\}\left( a^{1 + 2} b^{2 + 2} c^{1 + 2} \right) - \left\{ \left( \frac{6}{25} \right)\left( - 50 \right)\left( a^{2 + 2} b^2 c^{2 + 2} \right) \right\}\]
\[ = \frac{175}{2} a^3 b^4 c^3 - \left( - 12 a^4 b^2 c^4 \right)\]
\[ = \frac{175}{2} a^3 b^4 c^3 + 12 a^4 b^2 c^4\]
Thus, the answer is \[\frac{175}{2} a^3 b^4 c^3 + 12 a^4 b^2 c^4\].
APPEARS IN
संबंधित प्रश्न
Express each of the following product as a monomials and verify the result in each case for x = 1:
(5x4) × (x2)3 × (2x)2
Write down the product of −8x2y6 and −20xy. Verify the product for x = 2.5, y = 1.
Find the following product: \[\frac{7}{5} x^2 y\left( \frac{3}{5}x y^2 + \frac{2}{5}x \right)\]
Find the following product: \[\frac{4}{3}a( a^2 + b^2 - 3 c^2 )\]
Simplify: x2(x2 + 1) − x3(x + 1) − x(x3 − x)
Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]
Find the following product and verify the result for x = − 1, y = − 2:
(3x − 5y) (x + y)
Show that: (4pq + 3q)2 − (4pq − 3q)2 = 48pq2
Multiply:
16xy × 18xy
Solve:
(3x + 2y)(7x − 8y)