Advertisements
Advertisements
प्रश्न
Find the following product:
0.1y(0.1x5 + 0.1y)
उत्तर
To find the product, we will use distributive law as follows:
\[0 . 1y\left( 0 . 1 x^5 + 0 . 1y \right)\]
\[ = \left( 0 . 1y \right)\left( 0 . 1 x^5 \right) + \left( 0 . 1y \right)\left( 0 . 1y \right)\]
\[ = \left( 0 . 1 \times 0 . 1 \right)\left( y \times x^5 \right) + \left( 0 . 1 \times 0 . 1 \right)\left( y \times y \right)\]
\[ = \left( 0 . 1 \times 0 . 1 \right)\left( x^5 \times y \right) + \left( 0 . 1 \times 0 . 1 \right)\left( y^{1 + 1} \right)\]
\[ = 0 . 01 x^5 y + 0 . 01 y^2\]
Thus, the answer is \[0 . 01 x^5 y + 0 . 01 y^2\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[\left( \frac{7}{9}a b^2 \right) \times \left( \frac{15}{7}a c^2 b \right) \times \left( - \frac{3}{5} a^2 c \right)\]
Evaluate (−8x2y6) × (−20xy) for x = 2.5 and y = 1.
Find the following product:
−11a(3a + 2b)
Find the following product: \[\frac{7}{5} x^2 y\left( \frac{3}{5}x y^2 + \frac{2}{5}x \right)\]
Find the following product: \[\frac{4}{3}a( a^2 + b^2 - 3 c^2 )\]
Simplify: a(b − c) + b(c − a) + c(a − b)
Multiply:
(x2 + y2) by (3a + 2b)
Multiply:
(0.8a − 0.5b) by (1.5a − 3b)
Show that: (3x + 7)2 − 84x = (3x − 7)2
Show that: \[\left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2mn = \frac{16 m^2}{9} + \frac{9 n^2}{16}\]