Advertisements
Advertisements
प्रश्न
Show that: \[\left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2mn = \frac{16 m^2}{9} + \frac{9 n^2}{16}\]
उत्तर
\[\text { LHS } = \left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2mn\]
\[ = \left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2 \times \frac{4m}{3} \times \frac{3n}{4}\]
\[ = \left( \frac{4m}{3} \right)^2 + \left( \frac{3n}{4} \right)^2 \left[ \because \left( a - b \right)^2 + 2ab = a^2 + b^2 \right]\]
\[ = \frac{16 m^2}{9} + \frac{9 n^2}{16}\]
= RHS
Because LHS is equal to RHS, the given equation is verified.
APPEARS IN
संबंधित प्रश्न
Express each of the following product as a monomials and verify the result in each case for x = 1:
(x2)3 × (2x) × (−4x) × (5)
Write down the product of −8x2y6 and −20xy. Verify the product for x = 2.5, y = 1.
Find the following product: \[\frac{7}{5} x^2 y\left( \frac{3}{5}x y^2 + \frac{2}{5}x \right)\]
Simplify: 2x2(x3 − x) − 3x(x4 + 2x) − 2(x4 − 3x2)
Simplify: a(b − c) + b(c − a) + c(a − b)
Simplify: a2b(a3 − a + 1) − ab(a4 − 2a2 + 2a) − b (a3 − a2 − 1)
Multiply:
(5x + 3) by (7x + 2)
Find the following product and verify the result for x = − 1, y = − 2:
(x2y − 1) (3 − 2x2y)
Show that: (3x + 7)2 − 84x = (3x − 7)2
Show that: (a − b)(a + b) + (b − c)(b + c) + (c − a)( c + a) = 0