हिंदी

Show That: ( 4 M 3 − 3 N 4 ) 2 + 2 M N = 16 M 2 9 + 9 N 2 16 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that: \[\left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2mn = \frac{16 m^2}{9} + \frac{9 n^2}{16}\]

संक्षेप में उत्तर

उत्तर

\[\text { LHS } = \left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2mn\]

\[ = \left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2 \times \frac{4m}{3} \times \frac{3n}{4}\]

\[ = \left( \frac{4m}{3} \right)^2 + \left( \frac{3n}{4} \right)^2 \left[ \because \left( a - b \right)^2 + 2ab = a^2 + b^2 \right]\]

\[ = \frac{16 m^2}{9} + \frac{9 n^2}{16}\]

= RHS

Because LHS is equal to RHS, the given equation is verified.

shaalaa.com
Multiplication of Algebraic Expressions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Algebraic Expressions and Identities - Exercise 6.6 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 8
अध्याय 6 Algebraic Expressions and Identities
Exercise 6.6 | Q 20.3 | पृष्ठ ४४
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×