Advertisements
Advertisements
प्रश्न
Show that: \[\left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2mn = \frac{16 m^2}{9} + \frac{9 n^2}{16}\]
उत्तर
\[\text { LHS } = \left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2mn\]
\[ = \left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2 \times \frac{4m}{3} \times \frac{3n}{4}\]
\[ = \left( \frac{4m}{3} \right)^2 + \left( \frac{3n}{4} \right)^2 \left[ \because \left( a - b \right)^2 + 2ab = a^2 + b^2 \right]\]
\[ = \frac{16 m^2}{9} + \frac{9 n^2}{16}\]
= RHS
Because LHS is equal to RHS, the given equation is verified.
APPEARS IN
संबंधित प्रश्न
Find the value of (5x6) × (−1.5x2y3) × (−12xy2) when x = 1, y = 0.5.
Find the following product:
−11y2(3y + 7)
Find the following product: \[- \frac{8}{27}xyz\left( \frac{3}{2}xy z^2 - \frac{9}{4}x y^2 z^3 \right)\]
Find the following product:
4.1xy(1.1x − y)
Find the product 24x2 (1 − 2x) and evaluate its value for x = 3.
Simplify: a(b − c) + b(c − a) + c(a − b)
Simplify: 4ab(a − b) − 6a2(b − b2) − 3b2(2a2 − a) + 2ab(b − a)
Multiply:
(5x + 3) by (7x + 2)
Multiply:
[−3d + (−7f)] by (5d + f)
Multiply:
(4x + 5y) × (9x + 7y)