Advertisements
Advertisements
प्रश्न
Show that: (9a − 5b)2 + 180ab = (9a + 5b)2
उत्तर
\[\text { LHS } = \left( 9a - 5b \right)^2 + 180ab\]
\[ = \left( 9a - 5b \right)^2 + 4 \times 9a \times 5b\]
\[ = \left( 9a + 5b \right)^2 \left[ \because \left( a - b \right)^2 + 4ab = \left( a + b \right)^2 \right]\]
= RHS
Because LHS is equal to RHS, the given equation is verified.
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[\left( \frac{- 24}{25} x^3 z \right) \times \left( - \frac{15}{16}x z^2 y \right)\]
Find each of the following product:
(2.3xy) × (0.1x) × (0.16)
Find the following product: \[\frac{6x}{5}( x^3 + y^3 )\]
Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]
Multiply:
(5x + 3) by (7x + 2)
Multiply:
(3x2y − 5xy2) by \[\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\].
Simplify:
a2b2(a + 2b)(3a + b)
Simplify:
(2x2 + 3x − 5)(3x2 − 5x + 4)
Simplify:
(3x − 2)(2x − 3) + (5x − 3)(x + 1)
Multiply:
16xy × 18xy