Advertisements
Advertisements
प्रश्न
Simplify:
(2x2 + 3x − 5)(3x2 − 5x + 4)
उत्तर
To simplify, we will proceed as follows:
\[\left( 2 x^2 + 3x - 5 \right)\left( 3 x^2 - 5x + 4 \right)\]
\[= 2 x^2 \left( 3 x^2 - 5x + 4 \right) + 3x\left( 3 x^2 - 5x + 4 \right) - 5\left( 3 x^2 - 5x + 4 \right)\] (Distributive law)
\[= 6 x^4 - 10 x^3 + 8 x^2 + 9 x^3 - 15 x^2 + 12x - 15 x^2 + 25x - 20\]
\[= 6 x^4 - 10 x^3 + 9 x^3 + 8 x^2 - 15 x^2 - 15 x^2 + 12x + 25x - 20\] (Rearranging)
\[= 6 x^4 - x^3 - 22 x^2 + 36x - 20\] (Combining like terms)
Thus, the answer is \[6 x^4 - x^3 - 22 x^2 + 36x - 20\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[\left( \frac{- 24}{25} x^3 z \right) \times \left( - \frac{15}{16}x z^2 y \right)\]
Find the following product: \[\frac{6x}{5}( x^3 + y^3 )\]
Find the following product: \[\left( - \frac{7}{4}a b^2 c - \frac{6}{25} a^2 c^2 \right)( - 50 a^2 b^2 c^2 )\]
Find the product 24x2 (1 − 2x) and evaluate its value for x = 3.
Multiply:
(x2 + y2) by (3a + 2b)
Multiply: \[\left( - \frac{a}{7} + \frac{a^2}{9} \right)by\left( \frac{b}{2} - \frac{b^2}{3} \right)\].
Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)
Simplify:
(3x − 2)(2x − 3) + (5x − 3)(x + 1)
Simplify:
(x2 − 3x + 2)(5x − 2) − (3x2 + 4x − 5)(2x − 1)
Show that: (9a − 5b)2 + 180ab = (9a + 5b)2