Advertisements
Advertisements
प्रश्न
Find the product 24x2 (1 − 2x) and evaluate its value for x = 3.
उत्तर
To find the product, we will use distributive law as follows:
\[24 x^2 \left( 1 - 2x \right)\]
\[ = 24 x^2 \times 1 - 24 x^2 \times 2x\]
\[ = 24 x^2 - 48 x^{1 + 2} \]
\[ = 24 x^2 - 48 x^3\]
Substituting x = 3 in the result, we get:
\[24 x^2 - 48 x^3 \]
\[ = 24 \left( 3 \right)^2 - 48 \left( 3 \right)^3 \]
\[ = 24 \times 9 - 48 \times 27\]
\[ = 216 - 1296\]
\[ = - 1080\]
Thus, the product is \[(24 x^2 - 48 x^3 )\text {P and its value for x = 3 is } ( - 1080)\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
−3a2 × 4b4
Find the following product:
−11a(3a + 2b)
Simplify: 3a2 + 2(a + 2) − 3a(2a + 1)
Simplify: a2b(a − b2) + ab2(4ab − 2a2) − a3b(1 − 2b)
Multiply:
(x6 − y6) by (x2 + y2)
Multiply:
(2x2y2 − 5xy2) by (x2 − y2)
Find the following product and verify the result for x = − 1, y = − 2:
(x2y − 1) (3 − 2x2y)
Find the following product and verify the result for x = − 1, y = − 2: \[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)
Solve the following equation.
6x − 1 = 3x + 8