Advertisements
Advertisements
प्रश्न
Simplify: 3a2 + 2(a + 2) − 3a(2a + 1)
उत्तर
To simplify, we will use distributive law as follows:
\[3 a^2 + 2\left( a + 2 \right) - 3a\left( 2a + 1 \right)\]
\[ = 3 a^2 + 2a + 4 - 6 a^2 - 3a\]
\[ = 3 a^2 - 6 a^2 + 2a - 3a + 4\]
\[ = - 3 a^2 - a + 4\]
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
(−5xy) × (−3x2yz)
Find each of the following product: \[\left( \frac{- 24}{25} x^3 z \right) \times \left( - \frac{15}{16}x z^2 y \right)\]
Find each of the following product:
\[\left( - \frac{2}{7} a^4 \right) \times \left( - \frac{3}{4} a^2 b \right) \times \left( - \frac{14}{5} b^2 \right)\]
Find each of the following product: \[\left( \frac{4}{3}p q^2 \right) \times \left( - \frac{1}{4} p^2 r \right) \times \left( 16 p^2 q^2 r^2 \right)\]
Find the following product: \[\left( - \frac{7}{4}a b^2 c - \frac{6}{25} a^2 c^2 \right)( - 50 a^2 b^2 c^2 )\]
Find the product 24x2 (1 − 2x) and evaluate its value for x = 3.
Simplify: 2a2 + 3a(1 − 2a3) + a(a + 1)
Simplify: a2b(a − b2) + ab2(4ab − 2a2) − a3b(1 − 2b)
Find the following product and verify the result for x = − 1, y = − 2:
(x2y − 1) (3 − 2x2y)
Solve the following equation.
6x − 1 = 3x + 8