Advertisements
Advertisements
प्रश्न
Find each of the following product:
\[\left( - \frac{2}{7} a^4 \right) \times \left( - \frac{3}{4} a^2 b \right) \times \left( - \frac{14}{5} b^2 \right)\]
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( - \frac{2}{7} a^4 \right) \times \left( - \frac{3}{4} a^2 b \right) \times \left( - \frac{14}{5} b^2 \right)\]
\[ = \left\{ \left( - \frac{2}{7} \right) \times \left( - \frac{3}{4} \right) \times \left( - \frac{14}{5} \right) \right\} \times \left( a^4 \times a^2 \right) \times \left( b \times b^2 \right)\]
\[ = \left\{ - \left( \frac{2}{7} \times \frac{3}{4} \times \frac{14}{5} \right) \right\} \times a^{4 + 2} \times b^{1 + 2} \]
\[ = \left\{ - \left( \frac{2}{7} \times \frac{3}{4_2} \times \frac{{14}^{2^1}}{5} \right) \right\} \times a^6 \times b^3 \]
\[ = - \frac{3}{5} a^6 b^3\]
Thus, the answer is \[- \frac{3}{5} a^6 b^3\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
(−5a) × (−10a2) × (−2a3)
Find each of the following product:
(−4x2) × (−6xy2) × (−3yz2)
Find the following product:
−5a(7a − 2b)
Multiply \[- \frac{3}{2} x^2 y^3 by (2x - y)\] and verify the answer for x = 1 and y = 2.
Multiply:
(x6 − y6) by (x2 + y2)
Multiply:
(3x2y − 5xy2) by \[\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\].
Multiply:
(2x2 − 1) by (4x3 + 5x2)
Find the following product and verify the result for x = − 1, y = − 2: \[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
Simplify:
(5 − x)(6 − 5x)( 2 − x)
Solve the following equation.
6x − 1 = 3x + 8