Advertisements
Advertisements
प्रश्न
Find each of the following product:
(−4x2) × (−6xy2) × (−3yz2)
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., \[a^m \times a^n = a^{m + n}\]
We have:
\[\left( - 4 x^2 \right) \times \left( - 6x y^2 \right) \times \left( - 3y z^2 \right)\]
\[ = \left\{ \left( - 4 \right) \times \left( - 6 \right) \times \left( - 3 \right) \right\} \times \left( x^2 \times x \right) \times \left( y^2 \times y \right) \times z^2 \]
\[ = \left\{ \left( - 4 \right) \times \left( - 6 \right) \times \left( - 3 \right) \right\} \times \left( x^{2 + 1} \right) \times \left( y^{2 + 1} \right) \times z^2 \]
\[ = - 72 x^3 y^3 z^2\]
Thus, the answer is \[- 72 x^3 y^3 z^2\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\frac{1}{4}xy \times \frac{2}{3} x^2 y z^2\]
Find each of the following product:
\[\left( 0 . 5x \right) \times \left( \frac{1}{3}x y^2 z^4 \right) \times \left( 24 x^2 yz \right)\]
Find the following product: \[\left( - \frac{7}{4}a b^2 c - \frac{6}{25} a^2 c^2 \right)( - 50 a^2 b^2 c^2 )\]
Simplify: 3a2 + 2(a + 2) − 3a(2a + 1)
Simplify: a2b(a − b2) + ab2(4ab − 2a2) − a3b(1 − 2b)
Simplify:
x2(x − y) y2(x + 2y)
Simplify:
(3x + 2y)(4x + 3y) − (2x − y)(7x − 3y)
Simplify : (4m − 8n)2 + (7m + 8n)2
Show that: (9a − 5b)2 + 180ab = (9a + 5b)2
Solve the following equation.
5(x + 1) = 74