Advertisements
Advertisements
प्रश्न
Find each of the following product:
(−4x2) × (−6xy2) × (−3yz2)
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., \[a^m \times a^n = a^{m + n}\]
We have:
\[\left( - 4 x^2 \right) \times \left( - 6x y^2 \right) \times \left( - 3y z^2 \right)\]
\[ = \left\{ \left( - 4 \right) \times \left( - 6 \right) \times \left( - 3 \right) \right\} \times \left( x^2 \times x \right) \times \left( y^2 \times y \right) \times z^2 \]
\[ = \left\{ \left( - 4 \right) \times \left( - 6 \right) \times \left( - 3 \right) \right\} \times \left( x^{2 + 1} \right) \times \left( y^{2 + 1} \right) \times z^2 \]
\[ = - 72 x^3 y^3 z^2\]
Thus, the answer is \[- 72 x^3 y^3 z^2\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[( - 7xy) \times \left( \frac{1}{4} x^2 yz \right)\]
Find each of the following product: \[\left( \frac{4}{3}p q^2 \right) \times \left( - \frac{1}{4} p^2 r \right) \times \left( 16 p^2 q^2 r^2 \right)\]
xy(x3 − y3)
Find the following product:
0.1y(0.1x5 + 0.1y)
Find the following product: \[\frac{4}{3}a( a^2 + b^2 - 3 c^2 )\]
Multiply: \[\left( \frac{3}{5}x + \frac{1}{2}y \right) by \left( \frac{5}{6}x + 4y \right)\]
Multiply:
(3x2y − 5xy2) by \[\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\].
Simplify:
(5x + 3)(x − 1)(3x − 2)
Show that: (4pq + 3q)2 − (4pq − 3q)2 = 48pq2
Multiply:
16xy × 18xy