Advertisements
Advertisements
प्रश्न
Find each of the following product: \[\left( \frac{4}{3}p q^2 \right) \times \left( - \frac{1}{4} p^2 r \right) \times \left( 16 p^2 q^2 r^2 \right)\]
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( \frac{4}{3}p q^2 \right) \times \left( - \frac{1}{4} p^2 r \right) \times \left( 16 p^2 q^2 r^2 \right)\]
\[ = \left\{ \frac{4}{3} \times \left( - \frac{1}{4} \right) \times 16 \right\} \times \left( p \times p^2 \times p^2 \right) \times \left( q^2 \times q^2 \right) \times \left( r \times r^2 \right)\]
\[ = \left\{ \frac{4}{3} \times \left( - \frac{1}{4} \right) \times 16 \right\} \times \left( p^{1 + 2 + 2} \right) \times \left( q^{2 + 2} \right) \times \left( r^{1 + 2} \right)\]
\[ = - \frac{16}{3} p^5 q^4 r^3\]
Thus, the answer is \[- \frac{1}{3} p^5 q^4 r^3\].
APPEARS IN
संबंधित प्रश्न
Express each of the following product as a monomials and verify the result in each case for x = 1:
(x2)3 × (2x) × (−4x) × (5)
Find the following product:
−11y2(3y + 7)
Find the following product: \[\frac{7}{5} x^2 y\left( \frac{3}{5}x y^2 + \frac{2}{5}x \right)\]
Simplify: a(b − c) − b(c − a) − c(a − b)
Simplify: 4ab(a − b) − 6a2(b − b2) − 3b2(2a2 − a) + 2ab(b − a)
Multiply:
(7x + y) by (x + 5y)
Multiply:
(3x2 + y2) by (2x2 + 3y2)
Multiply:
(2x2 − 1) by (4x3 + 5x2)
Simplify:
(5x − 3)(x + 2) − (2x + 5)(4x − 3)
Show that: (4pq + 3q)2 − (4pq − 3q)2 = 48pq2