Advertisements
Advertisements
प्रश्न
Simplify: 4ab(a − b) − 6a2(b − b2) − 3b2(2a2 − a) + 2ab(b − a)
उत्तर
To simplify, we will use distributive law as follows:
\[4ab\left( a - b \right) - 6 a^2 \left( b - b^2 \right) - 3 b^2 \left( 2 a^2 - a \right) + 2ab\left( b - a \right)\]
\[ = 4 a^2 b - 4a b^2 - 6 a^2 b + 6 a^2 b^2 - 6 b^2 a^2 + 3 b^2 a + 2a b^2 - 2 a^2 b\]
\[ = 4 a^2 b - 6 a^2 b - 2 a^2 b - 4a b^2 + 3 b^2 a + 2a b^2 + 6 a^2 b^2 - 6 b^2 a^2 \]
\[ = - 4 a^2 b + a b^2\]
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\frac{1}{4}xy \times \frac{2}{3} x^2 y z^2\]
Find each of the following product:
(−5a) × (−10a2) × (−2a3)
Find each of the following product:
(−4x2) × (−6xy2) × (−3yz2)
Express each of the following product as a monomials and verify the result in each case for x = 1:
(5x4) × (x2)3 × (2x)2
Simplify: a2b(a3 − a + 1) − ab(a4 − 2a2 + 2a) − b (a3 − a2 − 1)
Multiply: \[\left( \frac{3}{5}x + \frac{1}{2}y \right) by \left( \frac{5}{6}x + 4y \right)\]
Find the following product and verify the result for x = − 1, y = − 2:
(3x − 5y) (x + y)
Simplify:
x2(x + 2y) (x − 3y)
Simplify:
(2x2 + 3x − 5)(3x2 − 5x + 4)
Multiply:
(12a + 17b) × 4c