Advertisements
Advertisements
प्रश्न
Find each of the following product:
\[\frac{1}{4}xy \times \frac{2}{3} x^2 y z^2\]
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the the law of indices, that is, \[a^m \times a^n = a^{m + n}\].
We have:
\[\frac{1}{4}xy \times \frac{2}{3} x^2 y z^2 \]
\[ = \left( \frac{1}{4} \times \frac{2}{3} \right) \times \left( x \times x^2 \right) \times \left( y \times y \right) \times z^2 \]
\[ = \left( \frac{1}{4} \times \frac{2}{3} \right) \times \left( x^{1 + 2} \right) \times \left( y^{1 + 1} \right) \times z^2 \]
\[ = \frac{1}{6} x^3 y^2 z^2\]
Thus, the answer is \[\frac{1}{6} x^3 y^2 z^2\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
(−5xy) × (−3x2yz)
Find the following product: \[\left( - \frac{7}{4}a b^2 c - \frac{6}{25} a^2 c^2 \right)( - 50 a^2 b^2 c^2 )\]
Simplify: 4ab(a − b) − 6a2(b − b2) − 3b2(2a2 − a) + 2ab(b − a)
Multiply:
(7x + y) by (x + 5y)
Multiply:
(a − 1) by (0.1a2 + 3)
Multiply:
(x2 + y2) by (3a + 2b)
Find the following product and verify the result for x = − 1, y = − 2: \[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
Simplify:
(5 − x)(6 − 5x)( 2 − x)
Show that: \[\left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2mn = \frac{16 m^2}{9} + \frac{9 n^2}{16}\]
Multiply:
(4x + 5y) × (9x + 7y)